Cardinality of monoid algebras #
This file computes the cardinality of R[M] in terms of #R and #M.
@[simp]
theorem
MonoidAlgebra.cardinalMk_lift_of_fintype
(R : Type u)
(M' : Type v)
[Semiring R]
[Fintype M']
:
@[simp]
theorem
AddMonoidAlgebra.cardinalMk_lift_of_fintype
(R : Type u)
(M' : Type v)
[Semiring R]
[Fintype M']
:
@[simp]
theorem
MonoidAlgebra.cardinalMk_lift_of_infinite
(R : Type u)
(M' : Type v)
[Semiring R]
[Infinite M']
[Nontrivial R]
:
Cardinal.mk (MonoidAlgebra R M') = max (Cardinal.lift.{v, u} (Cardinal.mk R)) (Cardinal.lift.{u, v} (Cardinal.mk M'))
@[simp]
theorem
AddMonoidAlgebra.cardinalMk_lift_of_infinite
(R : Type u)
(M' : Type v)
[Semiring R]
[Infinite M']
[Nontrivial R]
:
Cardinal.mk (AddMonoidAlgebra R M') = max (Cardinal.lift.{v, u} (Cardinal.mk R)) (Cardinal.lift.{u, v} (Cardinal.mk M'))
theorem
MonoidAlgebra.cardinalMk_of_infinite
(R M : Type u)
[Semiring R]
[Infinite M]
[Nontrivial R]
:
theorem
AddMonoidAlgebra.cardinalMk_of_infinite
(R M : Type u)
[Semiring R]
[Infinite M]
[Nontrivial R]
:
@[simp]
theorem
MonoidAlgebra.cardinalMk_lift_of_infinite'
(R : Type u)
(M' : Type v)
[Semiring R]
[Nonempty M']
[Infinite R]
:
Cardinal.mk (MonoidAlgebra R M') = max (Cardinal.lift.{v, u} (Cardinal.mk R)) (Cardinal.lift.{u, v} (Cardinal.mk M'))
@[simp]
theorem
AddMonoidAlgebra.cardinalMk_lift_of_infinite'
(R : Type u)
(M' : Type v)
[Semiring R]
[Nonempty M']
[Infinite R]
:
Cardinal.mk (AddMonoidAlgebra R M') = max (Cardinal.lift.{v, u} (Cardinal.mk R)) (Cardinal.lift.{u, v} (Cardinal.mk M'))
theorem
MonoidAlgebra.cardinalMk_of_infinite'
(R M : Type u)
[Semiring R]
[Nonempty M]
[Infinite R]
:
theorem
AddMonoidAlgebra.cardinalMk_of_infinite'
(R M : Type u)
[Semiring R]
[Nonempty M]
[Infinite R]
: