Documentation

Mathlib.Algebra.QuadraticAlgebra.Defs

Quadratic Algebra #

In this file we define the quadratic algebra QuadraticAlgebra R a b over a commutative ring R, and define some algebraic structures on it.

Main definitions #

Warning #

If R is a ring, then QuadraticAlgebra a b is an R-algebra, and if R is of characteristic zero then the same holds for QuadraticAlgebra a b. In particular, in the very common case where R is and a and b are such that QuadraticAlgebra a b is a field, then QuadraticAlgebra a b is a -algebra in two ways, that are not definitionally equal. This is a known diamond for characteristic zero fields. If you are working in this setting you should start your file with

attribute [-instance] DivisionRing.toRatAlgebra

to keep the CharZero instance but to avoid having two Algebra instances. (Note that all the basic theorems about QuadraticAlgebra are stated using the general instance Algebra R (QuadraticAlgebra a b), so you don't want to deactivate that one.)

Tags #

Quadratic algebra, quadratic extension

structure QuadraticAlgebra (R : Type u) (a b : R) :

Quadratic algebra over a type with fixed coefficient where $i^2 = a + bi$, implemented as a structure with two fields, re and im. When R is a commutative ring, this is isomorphic to R[X]/(X^2-b*X-a).

  • re : R

    Real part of an element in quadratic algebra

  • im : R

    Imaginary part of an element in quadratic algebra

Instances For
    theorem QuadraticAlgebra.ext_iff {R : Type u} {a b : R} {x y : QuadraticAlgebra R a b} :
    x = y x.re = y.re x.im = y.im
    theorem QuadraticAlgebra.ext {R : Type u} {a b : R} {x y : QuadraticAlgebra R a b} (re : x.re = y.re) (im : x.im = y.im) :
    x = y
    def instDecidableEqQuadraticAlgebra.decEq {R✝ : Type u_1} {a✝ b✝ : R✝} [DecidableEq R✝] (x✝ x✝¹ : QuadraticAlgebra R✝ a✝ b✝) :
    Decidable (x✝ = x✝¹)
    Equations
    Instances For
      def QuadraticAlgebra.equivProd {R : Type u_1} (a b : R) :

      The equivalence between quadratic algebra over R and R × R.

      Equations
      Instances For
        @[simp]
        theorem QuadraticAlgebra.equivProd_symm_apply {R : Type u_1} (a b : R) (p : R × R) :
        (equivProd a b).symm p = { re := p.1, im := p.2 }
        @[simp]
        theorem QuadraticAlgebra.mk_eta {R : Type u_1} {a b : R} (z : QuadraticAlgebra R a b) :
        { re := z.re, im := z.im } = z
        def QuadraticAlgebra.C {R : Type u_1} {a b : R} [Zero R] (x : R) :

        The natural function R → QuadraticAlgebra R a b.

        Note that, if R is a ring, you should use algebraMap instead of C.

        Equations
        Instances For
          @[deprecated QuadraticAlgebra.C (since := "2025-12-15")]
          def QuadraticAlgebra.coe {R : Type u_1} {a b : R} [Zero R] (x : R) :

          Alias of QuadraticAlgebra.C.


          The natural function R → QuadraticAlgebra R a b.

          Note that, if R is a ring, you should use algebraMap instead of C.

          Equations
          Instances For
            @[simp]
            theorem QuadraticAlgebra.re_C {R : Type u_1} {a b : R} (r : R) [Zero R] :
            @[deprecated QuadraticAlgebra.re_C (since := "2025-12-15")]
            theorem QuadraticAlgebra.re_coe {R : Type u_1} {a b : R} (r : R) [Zero R] :

            Alias of QuadraticAlgebra.re_C.

            @[simp]
            theorem QuadraticAlgebra.im_C {R : Type u_1} {a b : R} (r : R) [Zero R] :
            @[deprecated QuadraticAlgebra.im_C (since := "2025-12-15")]
            theorem QuadraticAlgebra.im_coe {R : Type u_1} {a b : R} (r : R) [Zero R] :

            Alias of QuadraticAlgebra.im_C.

            @[deprecated QuadraticAlgebra.C_injective (since := "2025-12-15")]

            Alias of QuadraticAlgebra.C_injective.

            @[simp]
            theorem QuadraticAlgebra.C_inj {R : Type u_1} {a b : R} [Zero R] {x y : R} :
            @[deprecated QuadraticAlgebra.C_inj (since := "2025-12-15")]
            theorem QuadraticAlgebra.coe_inj {R : Type u_1} {a b : R} [Zero R] {x y : R} :

            Alias of QuadraticAlgebra.C_inj.

            instance QuadraticAlgebra.instZero {R : Type u_1} {a b : R} [Zero R] :
            Equations
            @[simp]
            theorem QuadraticAlgebra.re_zero {R : Type u_1} {a b : R} [Zero R] :
            re 0 = 0
            @[simp]
            theorem QuadraticAlgebra.im_zero {R : Type u_1} {a b : R} [Zero R] :
            im 0 = 0
            @[simp]
            theorem QuadraticAlgebra.C_zero {R : Type u_1} {a b : R} [Zero R] :
            @[deprecated QuadraticAlgebra.C_zero (since := "2025-12-15")]
            theorem QuadraticAlgebra.coe_zero {R : Type u_1} {a b : R} [Zero R] :

            Alias of QuadraticAlgebra.C_zero.

            @[simp]
            theorem QuadraticAlgebra.C_eq_zero_iff {R : Type u_1} {a b : R} [Zero R] {r : R} :
            @[deprecated QuadraticAlgebra.C_eq_zero_iff (since := "2025-12-15")]
            theorem QuadraticAlgebra.coe_eq_zero_iff {R : Type u_1} {a b : R} [Zero R] {r : R} :

            Alias of QuadraticAlgebra.C_eq_zero_iff.

            instance QuadraticAlgebra.instInhabited {R : Type u_1} {a b : R} [Zero R] :
            Equations
            instance QuadraticAlgebra.instOne {R : Type u_1} {a b : R} [Zero R] [One R] :
            Equations
            theorem QuadraticAlgebra.re_one {R : Type u_1} {a b : R} [Zero R] [One R] :
            re 1 = 1
            theorem QuadraticAlgebra.im_one {R : Type u_1} {a b : R} [Zero R] [One R] :
            im 1 = 0
            @[simp]
            theorem QuadraticAlgebra.C_one {R : Type u_1} {a b : R} [Zero R] [One R] :
            @[deprecated QuadraticAlgebra.C_one (since := "2025-12-15")]
            theorem QuadraticAlgebra.coe_one {R : Type u_1} {a b : R} [Zero R] [One R] :

            Alias of QuadraticAlgebra.C_one.

            @[simp]
            theorem QuadraticAlgebra.C_eq_one_iff {R : Type u_1} {a b : R} [Zero R] [One R] {r : R} :
            @[deprecated QuadraticAlgebra.C_eq_one_iff (since := "2025-12-15")]
            theorem QuadraticAlgebra.coe_eq_one_iff {R : Type u_1} {a b : R} [Zero R] [One R] {r : R} :

            Alias of QuadraticAlgebra.C_eq_one_iff.

            instance QuadraticAlgebra.instAdd {R : Type u_1} {a b : R} [Add R] :
            Equations
            @[simp]
            theorem QuadraticAlgebra.re_add {R : Type u_1} {a b : R} [Add R] (z w : QuadraticAlgebra R a b) :
            (z + w).re = z.re + w.re
            @[simp]
            theorem QuadraticAlgebra.im_add {R : Type u_1} {a b : R} [Add R] (z w : QuadraticAlgebra R a b) :
            (z + w).im = z.im + w.im
            @[simp]
            theorem QuadraticAlgebra.mk_add_mk {R : Type u_1} {a b : R} [Add R] (z w : QuadraticAlgebra R a b) :
            { re := z.re, im := z.im } + { re := w.re, im := w.im } = { re := z.re + w.re, im := z.im + w.im }
            @[simp]
            @[deprecated QuadraticAlgebra.C_add (since := "2025-12-15")]

            Alias of QuadraticAlgebra.C_add.

            instance QuadraticAlgebra.instNeg {R : Type u_1} {a b : R} [Neg R] :
            Equations
            @[simp]
            theorem QuadraticAlgebra.re_neg {R : Type u_1} {a b : R} [Neg R] (z : QuadraticAlgebra R a b) :
            (-z).re = -z.re
            @[simp]
            theorem QuadraticAlgebra.im_neg {R : Type u_1} {a b : R} [Neg R] (z : QuadraticAlgebra R a b) :
            (-z).im = -z.im
            @[simp]
            theorem QuadraticAlgebra.neg_mk {R : Type u_1} {a b : R} [Neg R] (x y : R) :
            -{ re := x, im := y } = { re := -x, im := -y }
            @[simp]
            theorem QuadraticAlgebra.C_neg {R : Type u_1} {a b : R} [NegZeroClass R] (x : R) :
            @[deprecated QuadraticAlgebra.C_neg (since := "2025-12-15")]

            Alias of QuadraticAlgebra.C_neg.

            instance QuadraticAlgebra.instSub {R : Type u_1} {a b : R} [Sub R] :
            Equations
            @[simp]
            theorem QuadraticAlgebra.re_sub {R : Type u_1} {a b : R} [Sub R] (z w : QuadraticAlgebra R a b) :
            (z - w).re = z.re - w.re
            @[simp]
            theorem QuadraticAlgebra.im_sub {R : Type u_1} {a b : R} [Sub R] (z w : QuadraticAlgebra R a b) :
            (z - w).im = z.im - w.im
            @[simp]
            theorem QuadraticAlgebra.mk_sub_mk {R : Type u_1} {a b : R} [Sub R] (x1 y1 x2 y2 : R) :
            { re := x1, im := y1 } - { re := x2, im := y2 } = { re := x1 - x2, im := y1 - y2 }
            @[simp]
            theorem QuadraticAlgebra.C_sub {R : Type u_1} {a b : R} (r1 r2 : R) [SubNegZeroMonoid R] :
            @[deprecated QuadraticAlgebra.C_sub (since := "2025-12-15")]

            Alias of QuadraticAlgebra.C_sub.

            instance QuadraticAlgebra.instMul {R : Type u_1} {a b : R} [Mul R] [Add R] :
            Equations
            @[simp]
            theorem QuadraticAlgebra.re_mul {R : Type u_1} {a b : R} [Mul R] [Add R] (z w : QuadraticAlgebra R a b) :
            (z * w).re = z.re * w.re + a * z.im * w.im
            @[simp]
            theorem QuadraticAlgebra.im_mul {R : Type u_1} {a b : R} [Mul R] [Add R] (z w : QuadraticAlgebra R a b) :
            (z * w).im = z.re * w.im + z.im * w.re + b * z.im * w.im
            @[simp]
            theorem QuadraticAlgebra.mk_mul_mk {R : Type u_1} {a b : R} [Mul R] [Add R] (x1 y1 x2 y2 : R) :
            { re := x1, im := y1 } * { re := x2, im := y2 } = { re := x1 * x2 + a * y1 * y2, im := x1 * y2 + y1 * x2 + b * y1 * y2 }
            instance QuadraticAlgebra.instSMul {R : Type u_1} {S : Type u_2} {a b : R} [SMul S R] :
            Equations
            instance QuadraticAlgebra.instIsScalarTower {R : Type u_1} {S : Type u_2} {T : Type u_3} {a b : R} [SMul S R] [SMul T R] [SMul S T] [IsScalarTower S T R] :
            instance QuadraticAlgebra.instSMulCommClass {R : Type u_1} {S : Type u_2} {T : Type u_3} {a b : R} [SMul S R] [SMul T R] [SMulCommClass S T R] :
            @[simp]
            theorem QuadraticAlgebra.re_smul {R : Type u_1} {S : Type u_2} {a b : R} [SMul S R] (s : S) (z : QuadraticAlgebra R a b) :
            (s z).re = s z.re
            @[simp]
            theorem QuadraticAlgebra.im_smul {R : Type u_1} {S : Type u_2} {a b : R} [SMul S R] (s : S) (z : QuadraticAlgebra R a b) :
            (s z).im = s z.im
            @[simp]
            theorem QuadraticAlgebra.smul_mk {R : Type u_1} {S : Type u_2} {a b : R} [SMul S R] (s : S) (x y : R) :
            s { re := x, im := y } = { re := s x, im := s y }
            instance QuadraticAlgebra.instMulAction {R : Type u_1} {S : Type u_2} {a b : R} [Monoid S] [MulAction S R] :
            Equations
            @[simp]
            theorem QuadraticAlgebra.C_smul {R : Type u_1} {S : Type u_2} {a b : R} [Zero R] [SMulZeroClass S R] (s : S) (r : R) :
            @[deprecated QuadraticAlgebra.C_smul (since := "2025-12-15")]
            theorem QuadraticAlgebra.coe_smul {R : Type u_1} {S : Type u_2} {a b : R} [Zero R] [SMulZeroClass S R] (s : S) (r : R) :

            Alias of QuadraticAlgebra.C_smul.

            instance QuadraticAlgebra.instAddMonoid {R : Type u_1} {a b : R} [AddMonoid R] :
            Equations
            • One or more equations did not get rendered due to their size.
            Equations
            instance QuadraticAlgebra.instModule {R : Type u_1} {S : Type u_2} {a b : R} [Semiring S] [AddCommMonoid R] [Module S R] :
            Equations
            instance QuadraticAlgebra.instAddGroup {R : Type u_1} {a b : R} [AddGroup R] :
            Equations
            • One or more equations did not get rendered due to their size.
            Equations
            • One or more equations did not get rendered due to their size.
            @[deprecated QuadraticAlgebra.C_ofNat (since := "2025-12-15")]

            Alias of QuadraticAlgebra.C_ofNat.

            @[simp]
            theorem QuadraticAlgebra.re_natCast {R : Type u_1} {a b : R} [AddCommMonoidWithOne R] (n : ) :
            (↑n).re = n
            @[simp]
            theorem QuadraticAlgebra.im_natCast {R : Type u_1} {a b : R} [AddCommMonoidWithOne R] (n : ) :
            (↑n).im = 0
            theorem QuadraticAlgebra.C_natCast {R : Type u_1} {a b : R} [AddCommMonoidWithOne R] (n : ) :
            @[deprecated QuadraticAlgebra.C_natCast (since := "2025-12-15")]
            theorem QuadraticAlgebra.coe_natCast {R : Type u_1} {a b : R} [AddCommMonoidWithOne R] (n : ) :

            Alias of QuadraticAlgebra.C_natCast.

            theorem QuadraticAlgebra.im_ofNat {R : Type u_1} {a b : R} [AddCommMonoidWithOne R] (n : ) [n.AtLeastTwo] :
            Equations
            • One or more equations did not get rendered due to their size.
            @[simp]
            theorem QuadraticAlgebra.re_intCast {R : Type u_1} {a b : R} [AddCommGroupWithOne R] (n : ) :
            (↑n).re = n
            @[simp]
            theorem QuadraticAlgebra.im_intCast {R : Type u_1} {a b : R} [AddCommGroupWithOne R] (n : ) :
            (↑n).im = 0
            theorem QuadraticAlgebra.C_intCast {R : Type u_1} {a b : R} [AddCommGroupWithOne R] (n : ) :
            @[deprecated QuadraticAlgebra.C_intCast (since := "2025-12-15")]
            theorem QuadraticAlgebra.coe_intCast {R : Type u_1} {a b : R} [AddCommGroupWithOne R] (n : ) :

            Alias of QuadraticAlgebra.C_intCast.

            Equations
            • One or more equations did not get rendered due to their size.
            @[deprecated QuadraticAlgebra.C_mul_eq_smul (since := "2025-12-15")]
            theorem QuadraticAlgebra.coe_mul_eq_smul {R : Type u_1} {a b : R} [NonUnitalNonAssocSemiring R] (r : R) (x : QuadraticAlgebra R a b) :

            Alias of QuadraticAlgebra.C_mul_eq_smul.

            @[deprecated QuadraticAlgebra.C_mul (since := "2025-12-15")]

            Alias of QuadraticAlgebra.C_mul.

            Equations
            • One or more equations did not get rendered due to their size.
            @[simp]
            theorem QuadraticAlgebra.nsmul_mk {R : Type u_1} {a b : R} [NonAssocSemiring R] (n : ) (x y : R) :
            n * { re := x, im := y } = { re := n * x, im := n * y }
            def QuadraticAlgebra.reₗ {R : Type u_1} (a b : R) [Semiring R] :

            QuadraticAlgebra.re as a LinearMap

            Equations
            Instances For
              @[simp]
              theorem QuadraticAlgebra.reₗ_apply {R : Type u_1} (a b : R) [Semiring R] (self : QuadraticAlgebra R a b) :
              (reₗ a b) self = self.re
              def QuadraticAlgebra.imₗ {R : Type u_1} (a b : R) [Semiring R] :

              QuadraticAlgebra.im as a LinearMap

              Equations
              Instances For
                @[simp]
                theorem QuadraticAlgebra.imₗ_apply {R : Type u_1} (a b : R) [Semiring R] (self : QuadraticAlgebra R a b) :
                (imₗ a b) self = self.im
                def QuadraticAlgebra.linearEquivTuple {R : Type u_1} (a b : R) [Semiring R] :

                QuadraticAlgebra.equivTuple as a LinearEquiv

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem QuadraticAlgebra.linearEquivTuple_apply {R : Type u_1} (a b : R) [Semiring R] (z : QuadraticAlgebra R a b) :
                  @[simp]
                  theorem QuadraticAlgebra.linearEquivTuple_symm_apply {R : Type u_1} (a b : R) [Semiring R] (x : Fin 2R) :
                  (linearEquivTuple a b).symm x = { re := x 0, im := x 1 }
                  noncomputable def QuadraticAlgebra.basis {R : Type u_1} (a b : R) [Semiring R] :

                  QuadraticAlgebra R a b has a basis over R given by 1 and i

                  Equations
                  Instances For
                    @[simp]
                    theorem QuadraticAlgebra.basis_repr_apply {R : Type u_1} (a b : R) [Semiring R] (x : QuadraticAlgebra R a b) :
                    ((basis a b).repr x) = ![x.re, x.im]
                    instance QuadraticAlgebra.instFree {R : Type u_1} (a b : R) [Semiring R] :
                    Equations
                    • One or more equations did not get rendered due to their size.
                    instance QuadraticAlgebra.instAlgebra {R : Type u_1} {S : Type u_2} {a b : R} [CommSemiring S] [CommSemiring R] [Algebra S R] :
                    Equations
                    • One or more equations did not get rendered due to their size.
                    theorem QuadraticAlgebra.algebraMap_eq {R : Type u_1} {a b : R} [CommSemiring R] (r : R) :
                    (algebraMap R (QuadraticAlgebra R a b)) r = { re := r, im := 0 }
                    @[simp]
                    theorem QuadraticAlgebra.algebraMap_inj {R : Type u_1} {a b : R} [CommSemiring R] {x y : R} :
                    (algebraMap R (QuadraticAlgebra R a b)) x = (algebraMap R (QuadraticAlgebra R a b)) y x = y
                    @[simp]
                    theorem QuadraticAlgebra.algebraMap_re {R : Type u_1} {a b : R} (r : R) [CommSemiring R] :
                    ((algebraMap R (QuadraticAlgebra R a b)) r).re = r
                    @[simp]
                    theorem QuadraticAlgebra.algebraMap_im {R : Type u_1} {a b : R} (r : R) [CommSemiring R] :
                    ((algebraMap R (QuadraticAlgebra R a b)) r).im = 0
                    @[simp]
                    theorem QuadraticAlgebra.C_pow {R : Type u_1} {a b : R} [CommSemiring R] (n : ) (r : R) :
                    @[deprecated QuadraticAlgebra.C_pow (since := "2025-12-15")]
                    theorem QuadraticAlgebra.coe_pow {R : Type u_1} {a b : R} [CommSemiring R] (n : ) (r : R) :

                    Alias of QuadraticAlgebra.C_pow.

                    theorem QuadraticAlgebra.mul_C_eq_smul {R : Type u_1} {a b : R} [CommSemiring R] (r : R) (x : QuadraticAlgebra R a b) :
                    @[deprecated QuadraticAlgebra.mul_C_eq_smul (since := "2025-12-15")]
                    theorem QuadraticAlgebra.mul_coe_eq_smul {R : Type u_1} {a b : R} [CommSemiring R] (r : R) (x : QuadraticAlgebra R a b) :

                    Alias of QuadraticAlgebra.mul_C_eq_smul.

                    @[deprecated QuadraticAlgebra.C_eq_algebraMap (since := "2025-12-15")]

                    Alias of QuadraticAlgebra.C_eq_algebraMap.

                    theorem QuadraticAlgebra.smul_C {R : Type u_1} {a b : R} [CommSemiring R] (r1 r2 : R) :
                    @[deprecated QuadraticAlgebra.smul_C (since := "2025-12-15")]
                    theorem QuadraticAlgebra.smul_coe {R : Type u_1} {a b : R} [CommSemiring R] (r1 r2 : R) :

                    Alias of QuadraticAlgebra.smul_C.

                    theorem QuadraticAlgebra.algebraMap_dvd_iff {R : Type u_1} {a b : R} [CommSemiring R] {r : R} {z : QuadraticAlgebra R a b} :
                    (algebraMap R (QuadraticAlgebra R a b)) r z r z.re r z.im
                    @[deprecated QuadraticAlgebra.algebraMap_dvd_iff (since := "2025-12-15")]
                    theorem QuadraticAlgebra.coe_dvd_iff {R : Type u_1} {a b : R} [CommSemiring R] {r : R} {z : QuadraticAlgebra R a b} :
                    (algebraMap R (QuadraticAlgebra R a b)) r z r z.re r z.im

                    Alias of QuadraticAlgebra.algebraMap_dvd_iff.

                    @[simp]
                    theorem QuadraticAlgebra.algebraMap_dvd_iff_dvd {R : Type u_1} {a b : R} [CommSemiring R] {z w : R} :
                    @[deprecated QuadraticAlgebra.algebraMap_dvd_iff_dvd (since := "2025-12-15")]
                    theorem QuadraticAlgebra.coe_dvd_iff_dvd {R : Type u_1} {a b : R} [CommSemiring R] {z w : R} :

                    Alias of QuadraticAlgebra.algebraMap_dvd_iff_dvd.

                    instance QuadraticAlgebra.instCommRing {R : Type u_1} {a b : R} [CommRing R] :
                    Equations
                    • One or more equations did not get rendered due to their size.
                    @[simp]
                    theorem QuadraticAlgebra.zsmul_val {R : Type u_1} {a b : R} [CommRing R] (n : ) (x y : R) :
                    n * { re := x, im := y } = { re := n * x, im := n * y }