Finite colimits of finite simplicial sets are finite #
theorem
SSet.iSup_range_eq_top_of_isColimit
{J : Type u_1}
[CategoryTheory.Category.{u_2, u_1} J]
[CategoryTheory.Limits.HasColimitsOfShape J (Type u)]
{F : CategoryTheory.Functor J SSet}
{c : CategoryTheory.Limits.Cocone F}
(hc : CategoryTheory.Limits.IsColimit c)
:
theorem
SSet.hasDimensionLT_of_isColimit
{J : Type u_1}
[CategoryTheory.Category.{u_2, u_1} J]
[CategoryTheory.Limits.HasColimitsOfShape J (Type u)]
{F : CategoryTheory.Functor J SSet}
{c : CategoryTheory.Limits.Cocone F}
(hc : CategoryTheory.Limits.IsColimit c)
{n : ℕ}
(h : ∀ (j : J), (F.obj j).HasDimensionLT n)
:
c.pt.HasDimensionLT n
theorem
SSet.finite_of_isColimit
{J : Type u_1}
[CategoryTheory.Category.{u_2, u_1} J]
[CategoryTheory.Limits.HasColimitsOfShape J (Type u)]
{F : CategoryTheory.Functor J SSet}
{c : CategoryTheory.Limits.Cocone F}
(hc : CategoryTheory.Limits.IsColimit c)
[Finite J]
(h : ∀ (j : J), (F.obj j).Finite)
:
instance
SSet.instFiniteSigmaObjOfFinite
{ι : Type v}
[Finite ι]
(X : ι → SSet)
[CategoryTheory.Limits.HasCoproduct X]
[∀ (j : ι), (X j).Finite]
: