Binomial Series #
This file introduces the binomial series: $$ \sum_{k=0}^{\infty} \; \binom{a}{k} \; x^k = 1 + a x + \frac{a(a-1)}{2!} x^2 + \frac{a(a-1)(a-2)}{3!} x^3 + \cdots $$ where $a$ is an element of a normed field $\mathbb{K}$, and $x$ is an element of a normed algebra over $\mathbb{K}$.
Main Statements #
binomialSeries_radius_eq_one: The radius of convergence of the binomial series is1whenais not a natural number.binomialSeries_radius_eq_top_of_nat: In caseais natural, the series converges everywhere, since it is finite.
noncomputable def
binomialSeries
{๐ : Type u}
[Field ๐]
[CharZero ๐]
(๐ธ : Type v)
[Ring ๐ธ]
[Algebra ๐ ๐ธ]
[TopologicalSpace ๐ธ]
[IsTopologicalRing ๐ธ]
(a : ๐)
:
FormalMultilinearSeries ๐ ๐ธ ๐ธ
Binomial series: the (scalar) formal multilinear series with coefficients given
by Ring.choose a. The sum of this series is fun x โฆ (1 + x) ^ a within the radius
of convergence.
Equations
- binomialSeries ๐ธ a = FormalMultilinearSeries.ofScalars ๐ธ fun (x : โ) => Ring.choose a x
Instances For
@[simp]
theorem
binomialSeries_apply
{๐ : Type u}
[Field ๐]
[CharZero ๐]
(๐ธ : Type v)
[Ring ๐ธ]
[Algebra ๐ ๐ธ]
[TopologicalSpace ๐ธ]
[IsTopologicalRing ๐ธ]
(a : ๐)
{n : โ}
(v : Fin n โ ๐ธ)
:
theorem
binomialSeries_eq_ordinaryHypergeometricSeries
{๐ : Type u}
[Field ๐]
[CharZero ๐]
{๐ธ : Type v}
[Ring ๐ธ]
[Algebra ๐ ๐ธ]
[TopologicalSpace ๐ธ]
[IsTopologicalRing ๐ธ]
{a b : ๐}
(h : โ (k : โ), โk โ -b)
:
binomialSeries ๐ธ a = (ordinaryHypergeometricSeries ๐ธ (-a) b b).compContinuousLinearMap (-ContinuousLinearMap.id ๐ ๐ธ)
theorem
binomialSeries_radius_eq_top_of_nat
{๐ : Type v}
[RCLike ๐]
{๐ธ : Type u}
[NormedDivisionRing ๐ธ]
[NormedAlgebra ๐ ๐ธ]
{a : โ}
:
The radius of convergence of binomialSeries ๐ธ a is โค for natural a.
theorem
binomialSeries_radius_eq_one
{๐ : Type v}
[RCLike ๐]
{๐ธ : Type u}
[NormedDivisionRing ๐ธ]
[NormedAlgebra ๐ ๐ธ]
{a : ๐}
(ha : โ (k : โ), a โ โk)
:
The radius of convergence of binomialSeries ๐ธ a is 1, when a is not natural.
theorem
binomialSeries_radius_ge_one
{๐ : Type u_1}
[RCLike ๐]
{๐ธ : Type u_2}
[NormedDivisionRing ๐ธ]
[NormedAlgebra ๐ ๐ธ]
{a : ๐}
:
theorem
Complex.one_add_cpow_hasFPowerSeriesOnBall_zero
{a : โ}
:
HasFPowerSeriesOnBall (fun (x : โ) => (1 + x) ^ a) (binomialSeries โ a) 0 1
@[deprecated Complex.one_add_cpow_hasFPowerSeriesOnBall_zero (since := "2025-12-08")]
theorem
one_add_cpow_hasFPowerSeriesOnBall_zero
{a : โ}
:
HasFPowerSeriesOnBall (fun (x : โ) => (1 + x) ^ a) (binomialSeries โ a) 0 1
theorem
Complex.one_add_cpow_hasFPowerSeriesAt_zero
{a : โ}
:
HasFPowerSeriesAt (fun (x : โ) => (1 + x) ^ a) (binomialSeries โ a) 0
@[deprecated Complex.one_add_cpow_hasFPowerSeriesAt_zero (since := "2025-12-08")]
theorem
one_add_cpow_hasFPowerSeriesAt_zero
{a : โ}
:
HasFPowerSeriesAt (fun (x : โ) => (1 + x) ^ a) (binomialSeries โ a) 0
theorem
Complex.one_div_one_sub_cpow_hasFPowerSeriesOnBall_zero
(a : โ)
:
HasFPowerSeriesOnBall (fun (x : โ) => 1 / (1 - x) ^ a)
(FormalMultilinearSeries.ofScalars โ fun (n : โ) => Ring.choose (a + โn - 1) n) 0 1
theorem
Complex.one_div_one_sub_hasFPowerSeriesOnBall_zero :
HasFPowerSeriesOnBall (fun (x : โ) => 1 / (1 - x)) (FormalMultilinearSeries.ofScalars โ 1) 0 1
theorem
Complex.one_div_one_sub_sq_hasFPowerSeriesOnBall_zero :
HasFPowerSeriesOnBall (fun (x : โ) => 1 / (1 - x) ^ 2) (FormalMultilinearSeries.ofScalars โ fun (n : โ) => โn + 1) 0 1
theorem
Complex.one_div_sub_sq_sub_one_div_sq_hasFPowerSeriesOnBall_zero
(w x : โ)
(hw : w โ x)
:
theorem
Real.one_add_rpow_hasFPowerSeriesOnBall_zero
{a : โ}
:
HasFPowerSeriesOnBall (fun (x : โ) => (1 + x) ^ a) (binomialSeries โ a) 0 1
@[deprecated Real.one_add_rpow_hasFPowerSeriesOnBall_zero (since := "2025-12-08")]
theorem
one_add_rpow_hasFPowerSeriesOnBall_zero
{a : โ}
:
HasFPowerSeriesOnBall (fun (x : โ) => (1 + x) ^ a) (binomialSeries โ a) 0 1
theorem
Real.one_add_rpow_hasFPowerSeriesAt_zero
{a : โ}
:
HasFPowerSeriesAt (fun (x : โ) => (1 + x) ^ a) (binomialSeries โ a) 0
@[deprecated Real.one_add_rpow_hasFPowerSeriesAt_zero (since := "2025-12-08")]
theorem
one_add_rpow_hasFPowerSeriesAt_zero
{a : โ}
:
HasFPowerSeriesAt (fun (x : โ) => (1 + x) ^ a) (binomialSeries โ a) 0
Alias of Real.one_add_rpow_hasFPowerSeriesAt_zero.
theorem
Real.one_div_one_sub_rpow_hasFPowerSeriesOnBall_zero
(a : โ)
:
HasFPowerSeriesOnBall (fun (x : โ) => 1 / (1 - x) ^ a)
(FormalMultilinearSeries.ofScalars โ fun (n : โ) => Ring.choose (a + โn - 1) n) 0 1
theorem
Real.one_div_one_sub_hasFPowerSeriesOnBall_zero :
HasFPowerSeriesOnBall (fun (x : โ) => 1 / (1 - x)) (FormalMultilinearSeries.ofScalars โ 1) 0 1
theorem
Real.one_div_one_sub_sq_hasFPowerSeriesOnBall_zero :
HasFPowerSeriesOnBall (fun (x : โ) => 1 / (1 - x) ^ 2) (FormalMultilinearSeries.ofScalars โ fun (n : โ) => โn + 1) 0 1