Documentation

Mathlib.Analysis.Analytic.Binomial

Binomial Series #

This file introduces the binomial series: $$ \sum_{k=0}^{\infty} \; \binom{a}{k} \; x^k = 1 + a x + \frac{a(a-1)}{2!} x^2 + \frac{a(a-1)(a-2)}{3!} x^3 + \cdots $$ where $a$ is an element of a normed field $\mathbb{K}$, and $x$ is an element of a normed algebra over $\mathbb{K}$.

Main Statements #

theorem Complex.ofReal_choose (a : โ„) (n : โ„•) :
โ†‘(Ring.choose a n) = Ring.choose (โ†‘a) n
noncomputable def binomialSeries {๐•‚ : Type u} [Field ๐•‚] [CharZero ๐•‚] (๐”ธ : Type v) [Ring ๐”ธ] [Algebra ๐•‚ ๐”ธ] [TopologicalSpace ๐”ธ] [IsTopologicalRing ๐”ธ] (a : ๐•‚) :
FormalMultilinearSeries ๐•‚ ๐”ธ ๐”ธ

Binomial series: the (scalar) formal multilinear series with coefficients given by Ring.choose a. The sum of this series is fun x โ†ฆ (1 + x) ^ a within the radius of convergence.

Equations
Instances For
    @[simp]
    theorem binomialSeries_apply {๐•‚ : Type u} [Field ๐•‚] [CharZero ๐•‚] (๐”ธ : Type v) [Ring ๐”ธ] [Algebra ๐•‚ ๐”ธ] [TopologicalSpace ๐”ธ] [IsTopologicalRing ๐”ธ] (a : ๐•‚) {n : โ„•} (v : Fin n โ†’ ๐”ธ) :
    (binomialSeries ๐”ธ a n) v = Ring.choose a n โ€ข (List.ofFn v).prod
    theorem binomialSeries_eq_ordinaryHypergeometricSeries {๐•‚ : Type u} [Field ๐•‚] [CharZero ๐•‚] {๐”ธ : Type v} [Ring ๐”ธ] [Algebra ๐•‚ ๐”ธ] [TopologicalSpace ๐”ธ] [IsTopologicalRing ๐”ธ] {a b : ๐•‚} (h : โˆ€ (k : โ„•), โ†‘k โ‰  -b) :
    binomialSeries ๐”ธ a = (ordinaryHypergeometricSeries ๐”ธ (-a) b b).compContinuousLinearMap (-ContinuousLinearMap.id ๐•‚ ๐”ธ)
    theorem binomialSeries_radius_eq_top_of_nat {๐•‚ : Type v} [RCLike ๐•‚] {๐”ธ : Type u} [NormedDivisionRing ๐”ธ] [NormedAlgebra ๐•‚ ๐”ธ] {a : โ„•} :
    (binomialSeries ๐”ธ โ†‘a).radius = โŠค

    The radius of convergence of binomialSeries ๐”ธ a is โŠค for natural a.

    theorem binomialSeries_radius_eq_one {๐•‚ : Type v} [RCLike ๐•‚] {๐”ธ : Type u} [NormedDivisionRing ๐”ธ] [NormedAlgebra ๐•‚ ๐”ธ] {a : ๐•‚} (ha : โˆ€ (k : โ„•), a โ‰  โ†‘k) :
    (binomialSeries ๐”ธ a).radius = 1

    The radius of convergence of binomialSeries ๐”ธ a is 1, when a is not natural.

    theorem binomialSeries_radius_ge_one {๐•‚ : Type u_1} [RCLike ๐•‚] {๐”ธ : Type u_2} [NormedDivisionRing ๐”ธ] [NormedAlgebra ๐•‚ ๐”ธ] {a : ๐•‚} :
    1 โ‰ค (binomialSeries ๐”ธ a).radius
    @[deprecated Complex.one_add_cpow_hasFPowerSeriesOnBall_zero (since := "2025-12-08")]

    Alias of Complex.one_add_cpow_hasFPowerSeriesOnBall_zero.

    @[deprecated Complex.one_add_cpow_hasFPowerSeriesAt_zero (since := "2025-12-08")]

    Alias of Complex.one_add_cpow_hasFPowerSeriesAt_zero.

    theorem Complex.hasFPowerSeriesOnBall_ofScalars_mul_add_zero (a b : โ„‚) :
    HasFPowerSeriesOnBall (fun (x : โ„‚) => (b - a) / (1 - x) + a / (1 - x) ^ 2) (FormalMultilinearSeries.ofScalars โ„‚ fun (n : โ„•) => a * โ†‘n + b) 0 1

    โˆ‘ (ai + b) zโฑ = (b - a) / (1 - z) + a / (1 - z)ยฒ

    theorem Complex.one_div_sub_sq_sub_one_div_sq_hasFPowerSeriesOnBall_zero (w x : โ„‚) (hw : w โ‰  x) :
    HasFPowerSeriesOnBall (fun (z : โ„‚) => 1 / (z - w) ^ 2 - 1 / w ^ 2) (FormalMultilinearSeries.ofScalars โ„‚ fun (i : โ„•) => (โ†‘i + 1) * (w - x) ^ (-โ†‘(i + 2)) - Nat.casesOn i (w ^ (-2)) 0) x โ€–w - xโ€–โ‚‘
    @[deprecated Real.one_add_rpow_hasFPowerSeriesOnBall_zero (since := "2025-12-08")]

    Alias of Real.one_add_rpow_hasFPowerSeriesOnBall_zero.

    @[deprecated Real.one_add_rpow_hasFPowerSeriesAt_zero (since := "2025-12-08")]

    Alias of Real.one_add_rpow_hasFPowerSeriesAt_zero.

    theorem Real.hasFPowerSeriesOnBall_linear_zero (a b : โ„) :
    HasFPowerSeriesOnBall (fun (x : โ„) => (b - a) / (1 - x) + a / (1 - x) ^ 2) (FormalMultilinearSeries.ofScalars โ„ fun (x : โ„•) => a * โ†‘x + b) 0 1

    โˆ‘ (ai + b) zโฑ = (b - a) / (1 - z) + a / (1 - z)ยฒ