Unique differentiability property in real normed spaces #
In this file we prove that
uniqueDiffOn_convex: a convex set with nonempty interior in a real normed space has the unique differentiability property;uniqueDiffOn_Iocetc: intervals on the real line have the unique differentiability property.
theorem
mem_tangentConeAt_of_openSegment_subset
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{s : Set E}
{x y : E}
(h : openSegment ℝ x y ⊆ s)
:
If a subset of a real vector space contains an open segment, then the direction of this segment belongs to the tangent cone at its endpoints.
theorem
mem_tangentConeAt_of_segment_subset
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{s : Set E}
{x y : E}
(h : segment ℝ x y ⊆ s)
:
If a subset of a real vector space contains a segment, then the direction of this segment belongs to the tangent cone at its endpoints.
theorem
Convex.span_tangentConeAt
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{s : Set E}
(conv : Convex ℝ s)
(hs : (interior s).Nonempty)
{x : E}
(hx : x ∈ closure s)
:
theorem
uniqueDiffWithinAt_convex
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{s : Set E}
(conv : Convex ℝ s)
(hs : (interior s).Nonempty)
{x : E}
(hx : x ∈ closure s)
:
UniqueDiffWithinAt ℝ s x
In a real vector space, a convex set with nonempty interior is a set of unique differentiability at every point of its closure.
theorem
uniqueDiffOn_convex
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{s : Set E}
(conv : Convex ℝ s)
(hs : (interior s).Nonempty)
:
In a real vector space, a convex set with nonempty interior is a set of unique differentiability.
The real interval [0, 1] is a set of unique differentiability.
theorem
uniqueDiffWithinAt_Ioo
{a b t : ℝ}
(ht : t ∈ Set.Ioo a b)
:
UniqueDiffWithinAt ℝ (Set.Ioo a b) t