The topology of pointwise convergence is locally convex #
We prove that the topology of pointwise convergence is induced by a family of seminorms and that it is locally convex in the topological sense
PointwiseConvergenceCLM.seminorm: the seminorms onE →SLₚₜ[σ] Fgiven byA ↦ ‖A x‖for fixedx : E.PointwiseConvergenceCLM.withSeminorm: the topology is induced by the seminorms.PointwiseConvergenceCLM.instLocallyConvexSpace:E →SLₚₜ[σ] Fis locally convex.
def
PointwiseConvergenceCLM.seminorm
{𝕜₁ : Type u_3}
{𝕜₂ : Type u_4}
[NormedField 𝕜₁]
[NormedField 𝕜₂]
{σ : 𝕜₁ →+* 𝕜₂}
{E : Type u_7}
{F : Type u_8}
[AddCommGroup E]
[TopologicalSpace E]
[Module 𝕜₁ E]
[NormedAddCommGroup F]
[NormedSpace 𝕜₂ F]
(x : E)
:
The family of seminorms that induce the topology of pointwise convergence, namely ‖A x‖ for
all x : E.
Equations
Instances For
@[reducible, inline]
abbrev
PointwiseConvergenceCLM.seminormFamily
{𝕜₁ : Type u_3}
{𝕜₂ : Type u_4}
[NormedField 𝕜₁]
[NormedField 𝕜₂]
(σ : 𝕜₁ →+* 𝕜₂)
(E : Type u_7)
(F : Type u_8)
[AddCommGroup E]
[TopologicalSpace E]
[Module 𝕜₁ E]
[NormedAddCommGroup F]
[NormedSpace 𝕜₂ F]
:
SeminormFamily 𝕜₂ (E →SLₚₜ[σ] F) E
The family of seminorms that induce the topology of pointwise convergence, namely ‖A x‖ for
all x : E.
Instances For
def
PointwiseConvergenceCLM.inducingFn
{𝕜₁ : Type u_3}
{𝕜₂ : Type u_4}
[NormedField 𝕜₁]
[NormedField 𝕜₂]
(σ : 𝕜₁ →+* 𝕜₂)
(E : Type u_7)
(F : Type u_8)
[AddCommGroup E]
[TopologicalSpace E]
[Module 𝕜₁ E]
[NormedAddCommGroup F]
[NormedSpace 𝕜₂ F]
:
The coercion E →SLₚₜ[σ] F to E → F as a linear map.
The topology on E →SLₚₜ[σ] F is induced by this map.
Equations
Instances For
theorem
PointwiseConvergenceCLM.isInducing_inducingFn
{𝕜₁ : Type u_3}
{𝕜₂ : Type u_4}
[NormedField 𝕜₁]
[NormedField 𝕜₂]
(σ : 𝕜₁ →+* 𝕜₂)
(E : Type u_7)
(F : Type u_8)
[AddCommGroup E]
[TopologicalSpace E]
[Module 𝕜₁ E]
[NormedAddCommGroup F]
[NormedSpace 𝕜₂ F]
:
Topology.IsInducing ⇑(inducingFn σ E F)
theorem
PointwiseConvergenceCLM.withSeminorms
{𝕜₁ : Type u_3}
{𝕜₂ : Type u_4}
[NormedField 𝕜₁]
[NormedField 𝕜₂]
{σ : 𝕜₁ →+* 𝕜₂}
{E : Type u_7}
{F : Type u_8}
[AddCommGroup E]
[TopologicalSpace E]
[Module 𝕜₁ E]
[NormedAddCommGroup F]
[NormedSpace 𝕜₂ F]
:
theorem
PointwiseConvergenceCLM.tendsto_nhds
{α : Type u_1}
{𝕜₁ : Type u_3}
{𝕜₂ : Type u_4}
[NormedField 𝕜₁]
[NormedField 𝕜₂]
{σ : 𝕜₁ →+* 𝕜₂}
{E : Type u_7}
{F : Type u_8}
[AddCommGroup E]
[TopologicalSpace E]
[Module 𝕜₁ E]
[NormedAddCommGroup F]
[NormedSpace 𝕜₂ F]
{f : Filter α}
(u : α → E →SLₚₜ[σ] F)
(y₀ : E →SLₚₜ[σ] F)
:
theorem
PointwiseConvergenceCLM.tendsto_nhds_atTop
{α : Type u_1}
{𝕜₁ : Type u_3}
{𝕜₂ : Type u_4}
[NormedField 𝕜₁]
[NormedField 𝕜₂]
{σ : 𝕜₁ →+* 𝕜₂}
{E : Type u_7}
{F : Type u_8}
[AddCommGroup E]
[TopologicalSpace E]
[Module 𝕜₁ E]
[NormedAddCommGroup F]
[NormedSpace 𝕜₂ F]
[SemilatticeSup α]
[Nonempty α]
(u : α → E →SLₚₜ[σ] F)
(y₀ : E →SLₚₜ[σ] F)
:
def
PointwiseConvergenceCLM.mkCLM
{𝕜₁ : Type u_3}
{𝕜₂ : Type u_4}
{𝕜₃ : Type u_5}
[NormedField 𝕜₁]
[NormedField 𝕜₂]
[NormedField 𝕜₃]
{σ : 𝕜₁ →+* 𝕜₂}
{τ : 𝕜₃ →+* 𝕜₂}
{D : Type u_6}
{E : Type u_7}
(F : Type u_8)
(G : Type u_9)
[AddCommGroup E]
[TopologicalSpace E]
[Module 𝕜₁ E]
[AddCommGroup D]
[TopologicalSpace D]
[Module 𝕜₃ D]
[NormedAddCommGroup F]
[NormedSpace 𝕜₂ F]
[NormedAddCommGroup G]
[NormedSpace 𝕜₂ G]
(A : (E →SL[σ] F) →ₗ[𝕜₂] D →SL[τ] G)
(hbound : ∀ (f : D), ∃ (s : Finset E) (C : NNReal), ∀ (B : E →SL[σ] F), ∃ (g : E) (_ : g ∈ s), ‖(A B) f‖ ≤ C • ‖B g‖)
:
Define a continuous linear map between E →SLₚₜ[σ] F and D →SLₚₜ[τ] G.
Use PointwiseConvergenceCLM.precomp for the special case of the adjoint operator.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
PointwiseConvergenceCLM.instLocallyConvexSpace
{R : Type u_2}
{𝕜₁ : Type u_3}
{𝕜₂ : Type u_4}
[NormedField 𝕜₁]
[NormedField 𝕜₂]
{σ : 𝕜₁ →+* 𝕜₂}
{E : Type u_7}
{F : Type u_8}
[AddCommGroup E]
[TopologicalSpace E]
[Module 𝕜₁ E]
[AddCommGroup F]
[TopologicalSpace F]
[IsTopologicalAddGroup F]
[Module 𝕜₂ F]
[Semiring R]
[PartialOrder R]
[Module R F]
[ContinuousConstSMul R F]
[LocallyConvexSpace R F]
[SMulCommClass 𝕜₂ R F]
:
LocallyConvexSpace R (E →SLₚₜ[σ] F)