Documentation

Mathlib.CategoryTheory.Bicategory.Functor.Cat

Pseudofunctors to Cat #

In this file, we state naturality properties of mapId' and mapComp' for pseudofunctors to Cat.

theorem CategoryTheory.Pseudofunctor.mapId'_hom_naturality {B : Type u} [Bicategory B] (F : Pseudofunctor B Cat) {b₀ : B} {X Y : (F.obj b₀)} (f : b₀ b₀) (hf : f = CategoryStruct.id b₀) (a : X Y) :
theorem CategoryTheory.Pseudofunctor.mapId'_hom_naturality_assoc {B : Type u} [Bicategory B] (F : Pseudofunctor B Cat) {b₀ : B} {X Y : (F.obj b₀)} (f : b₀ b₀) (hf : f = CategoryStruct.id b₀) (a : X Y) {Z : (F.obj b₀)} (h : (CategoryStruct.id (F.obj b₀)).toFunctor.obj Y Z) :
theorem CategoryTheory.Pseudofunctor.mapId'_inv_naturality {B : Type u} [Bicategory B] (F : Pseudofunctor B Cat) {b₀ : B} {X Y : (F.obj b₀)} (f : b₀ b₀) (hf : f = CategoryStruct.id b₀) (a : X Y) :
theorem CategoryTheory.Pseudofunctor.mapId'_inv_naturality_assoc {B : Type u} [Bicategory B] (F : Pseudofunctor B Cat) {b₀ : B} {X Y : (F.obj b₀)} (f : b₀ b₀) (hf : f = CategoryStruct.id b₀) (a : X Y) {Z : (F.obj b₀)} (h : (F.map f).toFunctor.obj Y Z) :
theorem CategoryTheory.Pseudofunctor.mapComp'_hom_naturality {B : Type u} [Bicategory B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ : B} {X Y : (F.obj b₀)} (f : b₀ b₁) (g : b₁ b₂) (fg : b₀ b₂) (hfg : CategoryStruct.comp f g = fg) (a : X Y) :
theorem CategoryTheory.Pseudofunctor.mapComp'_hom_naturality_assoc {B : Type u} [Bicategory B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ : B} {X Y : (F.obj b₀)} (f : b₀ b₁) (g : b₁ b₂) (fg : b₀ b₂) (hfg : CategoryStruct.comp f g = fg) (a : X Y) {Z : (F.obj b₂)} (h : (CategoryStruct.comp (F.map f) (F.map g)).toFunctor.obj Y Z) :
@[simp]
theorem CategoryTheory.Pseudofunctor.mapComp'_inv_naturality {B : Type u} [Bicategory B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ : B} {X Y : (F.obj b₀)} (f : b₀ b₁) (g : b₁ b₂) (fg : b₀ b₂) (hfg : CategoryStruct.comp f g = fg) (a : X Y) :
@[simp]
theorem CategoryTheory.Pseudofunctor.mapComp'_inv_naturality_assoc {B : Type u} [Bicategory B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ : B} {X Y : (F.obj b₀)} (f : b₀ b₁) (g : b₁ b₂) (fg : b₀ b₂) (hfg : CategoryStruct.comp f g = fg) (a : X Y) {Z : (F.obj b₂)} (h : (F.map fg).toFunctor.obj Y Z) :
theorem CategoryTheory.Pseudofunctor.mapComp'_naturality_1 {B : Type u} [Bicategory B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ : B} {X Y : (F.obj b₀)} (f : b₀ b₁) (g : b₁ b₂) (fg : b₀ b₂) (hfg : CategoryStruct.comp f g = fg) (a : X Y) :
theorem CategoryTheory.Pseudofunctor.mapComp'_naturality_1_assoc {B : Type u} [Bicategory B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ : B} {X Y : (F.obj b₀)} (f : b₀ b₁) (g : b₁ b₂) (fg : b₀ b₂) (hfg : CategoryStruct.comp f g = fg) (a : X Y) {Z : (F.obj b₂)} (h : (CategoryStruct.comp (F.map f) (F.map g)).toFunctor.obj Y Z) :
theorem CategoryTheory.Pseudofunctor.mapComp'_naturality_2 {B : Type u} [Bicategory B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ : B} {X Y : (F.obj b₀)} (f : b₀ b₁) (g : b₁ b₂) (fg : b₀ b₂) (hfg : CategoryStruct.comp f g = fg) (a : X Y) :
theorem CategoryTheory.Pseudofunctor.mapComp'_naturality_2_assoc {B : Type u} [Bicategory B] (F : Pseudofunctor B Cat) {b₀ b₁ b₂ : B} {X Y : (F.obj b₀)} (f : b₀ b₁) (g : b₁ b₂) (fg : b₀ b₂) (hfg : CategoryStruct.comp f g = fg) (a : X Y) {Z : (F.obj b₂)} (h : (F.map fg).toFunctor.obj Y Z) :