Countable categories #
A category is countable in this sense if it has countably many objects and countably many morphisms.
instance
CategoryTheory.instCountableCategoryOfCountableOfIsThin
{J : Type u}
[Countable J]
[Category.{v_1, u} J]
[Quiver.IsThin J]
:
@[reducible, inline]
abbrev
CategoryTheory.CountableCategory.ObjAsType
(α : Type u)
[Category.{v, u} α]
[CountableCategory α]
:
A countable category α is equivalent to a category with objects in Type.
Equations
Instances For
instance
CategoryTheory.CountableCategory.instCountableObjAsType
(α : Type u)
[Category.{v, u} α]
[CountableCategory α]
:
instance
CategoryTheory.CountableCategory.instCountableHomObjAsType
(α : Type u)
[Category.{v, u} α]
[CountableCategory α]
{i j : ObjAsType α}
:
instance
CategoryTheory.CountableCategory.instObjAsType
(α : Type u)
[Category.{v, u} α]
[CountableCategory α]
:
noncomputable def
CategoryTheory.CountableCategory.objAsTypeEquiv
(α : Type u)
[Category.{v, u} α]
[CountableCategory α]
:
The constructed category is indeed equivalent to α.
Equations
Instances For
def
CategoryTheory.CountableCategory.HomAsType
(α : Type u)
[Category.{v, u} α]
[CountableCategory α]
:
A countable category α is equivalent to a small category with objects in Type.
Equations
Instances For
instance
CategoryTheory.CountableCategory.instLocallySmallObjAsType
(α : Type u)
[Category.{v, u} α]
[CountableCategory α]
:
instance
CategoryTheory.CountableCategory.instSmallCategoryHomAsType
(α : Type u)
[Category.{v, u} α]
[CountableCategory α]
:
instance
CategoryTheory.CountableCategory.instCountableHomAsType
(α : Type u)
[Category.{v, u} α]
[CountableCategory α]
:
instance
CategoryTheory.CountableCategory.instCountableHomHomAsType
(α : Type u)
[Category.{v, u} α]
[CountableCategory α]
{i j : HomAsType α}
:
instance
CategoryTheory.CountableCategory.instHomAsType
(α : Type u)
[Category.{v, u} α]
[CountableCategory α]
:
noncomputable def
CategoryTheory.CountableCategory.homAsTypeEquiv
(α : Type u)
[Category.{v, u} α]
[CountableCategory α]
:
The constructed category is indeed equivalent to α.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
CategoryTheory.instCountableCategoryOfFinCategory
(α : Type u_1)
[SmallCategory α]
[FinCategory α]
:
instance
CategoryTheory.countableCategoryOpposite
{J : Type u_1}
[Category.{v_1, u_1} J]
[CountableCategory J]
:
The opposite of a countable category is countable.
instance
CategoryTheory.countableCategoryUlift
{J : Type v}
[Category.{v, v} J]
[CountableCategory J]
:
Applying ULift to morphisms and objects of a category preserves countability.