Documentation

Mathlib.Data.Matrix.Cartan

Cartan matrices #

This file defines Cartan matrices for simple Lie algebras, both the exceptional types (E₆, E₇, E₈, F₄, G₂) and the classical infinite families (A, B, C, D).

Main definitions #

Exceptional types #

Classical types #

References #

Tags #

cartan matrix, lie algebra, dynkin diagram

Exceptional Cartan matrices #

The Cartan matrix of type E₆. See [bourbaki1968] plate V, page 277.

Equations
  • CartanMatrix.E₆ = !![2, 0, -1, 0, 0, 0; 0, 2, 0, -1, 0, 0; -1, 0, 2, -1, 0, 0; 0, -1, -1, 2, -1, 0; 0, 0, 0, -1, 2, -1; 0, 0, 0, 0, -1, 2]
Instances For

    The Cartan matrix of type E₇. See [bourbaki1968] plate VI, page 281.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The Cartan matrix of type E₈. See [bourbaki1968] plate VII, page 285.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The Cartan matrix of type F₄. See [bourbaki1968] plate VIII, page 288.

        Equations
        Instances For

          The Cartan matrix of type G₂. See [bourbaki1968] plate IX, page 290. We use the transpose of Bourbaki's matrix for consistency with F₄.

          Equations
          Instances For

            Classical Cartan matrices #

            def CartanMatrix.A (n : ) :
            Matrix (Fin n) (Fin n)

            The Cartan matrix of type Aₙ₋₁ (rank n-1, corresponding to sl(n)).

            Equations
            Instances For
              def CartanMatrix.B (n : ) :
              Matrix (Fin n) (Fin n)

              The Cartan matrix of type Bₙ (rank n, corresponding to so(2n+1)).

              Equations
              Instances For
                def CartanMatrix.C (n : ) :
                Matrix (Fin n) (Fin n)

                The Cartan matrix of type Cₙ (rank n, corresponding to sp(2n)).

                Equations
                Instances For
                  def CartanMatrix.D (n : ) :
                  Matrix (Fin n) (Fin n)

                  The Cartan matrix of type Dₙ (rank n, corresponding to so(2n)).

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    Properties #

                    @[simp]
                    theorem CartanMatrix.A_diag (n : ) :
                    (A n).diag = 2
                    @[simp]
                    theorem CartanMatrix.B_diag (n : ) (i : Fin n) :
                    B n i i = 2
                    @[simp]
                    theorem CartanMatrix.C_diag (n : ) (i : Fin n) :
                    C n i i = 2
                    @[simp]
                    theorem CartanMatrix.D_diag (n : ) (i : Fin n) :
                    D n i i = 2
                    theorem CartanMatrix.A_apply_le_zero_of_ne (n : ) (i j : Fin n) (h : i j) :
                    A n i j 0
                    theorem CartanMatrix.B_off_diag_nonpos (n : ) (i j : Fin n) (h : i j) :
                    B n i j 0
                    theorem CartanMatrix.C_off_diag_nonpos (n : ) (i j : Fin n) (h : i j) :
                    C n i j 0
                    theorem CartanMatrix.D_off_diag_nonpos (n : ) (i j : Fin n) (h : i j) :
                    D n i j 0

                    Transpose properties #

                    @[simp]
                    theorem CartanMatrix.A_transpose (n : ) :
                    (A n).transpose = A n
                    @[simp]
                    theorem CartanMatrix.B_transpose (n : ) :
                    (B n).transpose = C n
                    @[simp]
                    theorem CartanMatrix.C_transpose (n : ) :
                    (C n).transpose = B n
                    @[simp]
                    theorem CartanMatrix.D_transpose (n : ) :
                    (D n).transpose = D n

                    Small cases #

                    theorem CartanMatrix.A_one :
                    A 1 = !![2]
                    theorem CartanMatrix.A_two :
                    A 2 = !![2, -1; -1, 2]
                    theorem CartanMatrix.A_three :
                    A 3 = !![2, -1, 0; -1, 2, -1; 0, -1, 2]
                    theorem CartanMatrix.D_two :
                    D 2 = !![2, 0; 0, 2]
                    theorem CartanMatrix.B_two :
                    B 2 = !![2, -2; -1, 2]
                    theorem CartanMatrix.C_two :
                    C 2 = !![2, -1; -2, 2]
                    theorem CartanMatrix.D_three :
                    D 3 = !![2, -1, -1; -1, 2, 0; -1, 0, 2]
                    theorem CartanMatrix.D_three' :
                    (Matrix.reindex ((↑[0, 1]).formPerm ) ((↑[0, 1]).formPerm )) (D 3) = A 3
                    theorem CartanMatrix.D_four :
                    D 4 = !![2, -1, 0, 0; -1, 2, -1, -1; 0, -1, 2, 0; 0, -1, 0, 2]

                    Exceptional matrix diagonal entries #

                    @[simp]
                    theorem CartanMatrix.E₆_diag (i : Fin 6) :
                    E₆ i i = 2
                    @[simp]
                    theorem CartanMatrix.E₇_diag (i : Fin 7) :
                    E₇ i i = 2
                    @[simp]
                    theorem CartanMatrix.E₈_diag (i : Fin 8) :
                    E₈ i i = 2
                    @[simp]
                    theorem CartanMatrix.F₄_diag (i : Fin 4) :
                    F₄ i i = 2
                    @[simp]
                    theorem CartanMatrix.G₂_diag (i : Fin 2) :
                    G₂ i i = 2