Documentation

Mathlib.GroupTheory.Perm.MaximalSubgroups

Maximal subgroups of the symmetric groups #

TODO #

Reference #

The argument is taken from [M. Liebeck, C. Praeger, J. Saxl, A classification of the maximal subgroups of the finite alternating and symmetric groups, 1987][LiebeckPraegerSaxl-1987].

In the permutation group, the stabilizer of any set acts primitively on that set.

theorem MulAction.isPreprimitive_stabilizer_subgroup {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s : Set α} [IsPreprimitive (stabilizer M s) s] {G : Subgroup M} (hG : stabilizer M s G) :
IsPreprimitive (stabilizer (↥G) s) s

A (mostly trivial) primitivity criterion for stabilizers.

theorem MulAction.IsPretransitive.of_partition {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s : Set α} (hs : as, bs, ∃ (g : M), g a = b) (hs' : as, bs, ∃ (g : M), g a = b) (hM : stabilizer M s ) :
theorem Equiv.Perm.ofSubtype_mem_stabilizer {α : Type u_2} {s : Set α} [DecidablePred fun (x : α) => x s] (g : Perm s) :
theorem Equiv.Perm.swap_mem_stabilizer {α : Type u_2} [DecidableEq α] {a b : α} {s : Set α} (ha : a s) (hb : b s) :
theorem Equiv.Perm.exists_mem_stabilizer_smul_eq {α : Type u_2} {s : Set α} (a : α) :
a sbs, gMulAction.stabilizer (Perm α) s, g a = b

In the permutation group, the stabilizer of a set acts primitively on that set.

theorem Equiv.Perm.has_swap_mem_of_lt_stabilizer {α : Type u_2} [DecidableEq α] (s : Set α) (G : Subgroup (Perm α)) (hG : MulAction.stabilizer (Perm α) s < G) :
∃ (g : Perm α), g.IsSwap g G
theorem Subgroup.isPretransitive_of_stabilizer_lt {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s : Set α} {G : Subgroup M} (hG : MulAction.stabilizer M s < G) (moves : ∀ {s : Set α}, as, bs, gMulAction.stabilizer M s, g a = b) :
theorem MulAction.IsBlock.subsingleton_of_ssubset_of_stabilizer_le {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s B : Set α} (hB_ss_sc : B s) (hB : IsBlock M B) (hG : Function.Surjective toPerm) :
theorem MulAction.IsBlock.subsingleton_of_ssubset_of_stabilizer_Perm_le {α : Type u_2} {s B : Set α} {G : Subgroup (Equiv.Perm α)} (hB : IsBlock (↥G) B) (hB_ss_sc : B s) (hG : stabilizer (Equiv.Perm α) s G) :
theorem MulAction.IsBlock.subsingleton_of_stabilizer_lt_of_subset {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s B : Set α} {G : Subgroup M} [IsPreprimitive (stabilizer (↥G) s) s] (hB : IsBlock (↥G) B) (hB_not_le_sc : ∀ (B : Set α), IsBlock (↥G) BB sB.Subsingleton) (hG : stabilizer M s < G) (hBs : B s) :
theorem MulAction.IsBlock.compl_subset_of_stabilizer_le_of_not_subset_of_not_subset_compl {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s : Set α} [Finite α] [IsMultiplyPretransitive M α (s.ncard + 1)] {G : Subgroup M} (hG : stabilizer M s G) {B : Set α} (hBs : ¬B s) (hBsc : ¬B s) (hB : IsBlock (↥G) B) :
s B
theorem Equiv.Perm.isCoatom_stabilizer {α : Type u_2} [Finite α] {s : Set α} (hs_nonempty : s.Nonempty) (hsc_nonempty : s.Nonempty) ( : Nat.card α 2 * s.ncard) :

MulAction.stabilizer (Perm α) s is a maximal subgroup of Perm α, provided s and sᶜ are nonempty, and Nat.card α ≠ 2 * Nat.card s.

This is the intransitive case of the O'Nan–Scott classification.