Documentation

Mathlib.NumberTheory.ModularForms.Petersson

The Petersson scalar product #

For f, f' functions ℍ → ℂ, we define petersson k f f' to be the function τ ↦ conj (f τ) * f' τ * τ.im ^ k.

We show this function is (weight 0) invariant under Γ if f, f' are (weight k) invariant under Γ.

noncomputable def UpperHalfPlane.petersson (k : ) (f f' : UpperHalfPlane) (τ : UpperHalfPlane) :

The integrand in the Petersson scalar product of two modular forms.

Equations
Instances For
    theorem UpperHalfPlane.petersson_slash (k : ) (f f' : UpperHalfPlane) (g : GL (Fin 2) ) (τ : UpperHalfPlane) :
    petersson k (SlashAction.map k g f) (SlashAction.map k g f') τ = |(Matrix.GeneralLinearGroup.det g)| ^ (k - 2) * (σ g) (petersson k f f' (g τ))
    theorem UpperHalfPlane.petersson_symm (k : ) (f f' : UpperHalfPlane) (τ : UpperHalfPlane) :
    petersson k f' f τ = (starRingEnd ) (petersson k f f' τ)
    theorem SlashInvariantFormClass.norm_petersson_smul {F : Type u_1} {F' : Type u_2} [FunLike F UpperHalfPlane ] [FunLike F' UpperHalfPlane ] {k : } {g : GL (Fin 2) } {τ : UpperHalfPlane} {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetPlusMinusOne] [SlashInvariantFormClass F Γ k] {f : F} [SlashInvariantFormClass F' Γ k] {f' : F'} (hg : g Γ) :
    UpperHalfPlane.petersson k (⇑f) (⇑f') (g τ) = UpperHalfPlane.petersson k (⇑f) (⇑f') τ
    theorem SlashInvariantFormClass.petersson_smul {F : Type u_1} {F' : Type u_2} [FunLike F UpperHalfPlane ] [FunLike F' UpperHalfPlane ] {k : } {g : GL (Fin 2) } {τ : UpperHalfPlane} {Γ : Subgroup (GL (Fin 2) )} [Γ.HasDetOne] [SlashInvariantFormClass F Γ k] {f : F} [SlashInvariantFormClass F' Γ k] {f' : F'} (hg : g Γ) :
    UpperHalfPlane.petersson k (⇑f) (⇑f') (g τ) = UpperHalfPlane.petersson k (⇑f) (⇑f') τ
    theorem UpperHalfPlane.IsZeroAtImInfty.petersson_exp_decay_left {F : Type u_1} {F' : Type u_2} [FunLike F UpperHalfPlane ] [FunLike F' UpperHalfPlane ] (k : ) (Γ : Subgroup (GL (Fin 2) )) [Fact (IsCusp OnePoint.infty Γ)] [Γ.HasDetPlusMinusOne] [DiscreteTopology Γ] [ModularFormClass F Γ k] [ModularFormClass F' Γ k] {f : F} (h_bd : IsZeroAtImInfty f) (f' : F') :
    a > 0, petersson k f f' =O[atImInfty] fun (τ : UpperHalfPlane) => Real.exp (-a * τ.im)

    If f, f' are modular forms and f is zero at infinity, then petersson k f f' has exponentially rapid decay at infinity.

    theorem UpperHalfPlane.IsZeroAtImInfty.petersson_exp_decay_right {F : Type u_1} {F' : Type u_2} [FunLike F UpperHalfPlane ] [FunLike F' UpperHalfPlane ] (k : ) (Γ : Subgroup (GL (Fin 2) )) [Fact (IsCusp OnePoint.infty Γ)] [Γ.HasDetPlusMinusOne] [DiscreteTopology Γ] [ModularFormClass F Γ k] [ModularFormClass F' Γ k] (f : F) {f' : F'} (h_bd : IsZeroAtImInfty f') :
    a > 0, petersson k f f' =O[atImInfty] fun (τ : UpperHalfPlane) => Real.exp (-a * τ.im)

    If f, f' are modular forms and f' is zero at infinity, then petersson k f f' has exponentially rapid decay at infinity.