Documentation

Mathlib.NumberTheory.NumberField.AdeleRing

The adele ring of a number field #

This file contains the formalisation of the adele ring of a number field as the direct product of the infinite adele ring and the finite adele ring.

Main definitions #

References #

Tags #

adele ring, number field

The adele ring #

def NumberField.AdeleRing (R : Type u_1) (K : Type u_2) [CommRing R] [IsDedekindDomain R] [Field K] [Algebra R K] [IsFractionRing R K] :
Type (max u_2 u_2 u_1)

AdeleRing (š“ž K) K is the adele ring of a number field K.

More generally AdeleRing R K can be used if K is the field of fractions of the Dedekind domain R. This enables use of rings like AdeleRing ℤ ā„š, which in practice are easier to work with than AdeleRing (š“ž ā„š) ā„š.

Note that this definition does not give the correct answer in the function field case.

Equations
Instances For
    @[simp]
    theorem NumberField.AdeleRing.algebraMap_fst_apply (R : Type u_1) (K : Type u_2) [CommRing R] [IsDedekindDomain R] [Field K] [Algebra R K] [IsFractionRing R K] (x : K) (v : InfinitePlace K) :
    ((algebraMap K (AdeleRing R K)) x).1 v = ↑x
    @[simp]
    theorem NumberField.AdeleRing.algebraMap_snd_apply (R : Type u_1) (K : Type u_2) [CommRing R] [IsDedekindDomain R] [Field K] [Algebra R K] [IsFractionRing R K] (x : K) (v : IsDedekindDomain.HeightOneSpectrum R) :
    ((algebraMap K (AdeleRing R K)) x).2 v = ↑x
    @[reducible, inline]

    The subgroup of principal adeles (x)ᵄ where x ∈ K.

    Equations
    Instances For