Documentation

Mathlib.RingTheory.Algebraic.StronglyTranscendental

Strongly transcendental elements #

In this file, we provide basic properties for strongly transcendental elements in an algebra. This is a relatively niche notion, but is useful for proving Zarkisi's main theorem.

Reference #

def IsStronglyTranscendental (R : Type u_1) {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (x : S) :

We say that x : S is strongly transcendental over R if forall u : S and all p : R[X], p(x) * u = 0 → p * u = 0. If S is a domain, and R ⊆ S, this is equivalent to the image of x in Frac(S) being transcendental over R. See IsStronglyTranscendental.iff_of_isFractionRing.

Equations
Instances For
    theorem IsStronglyTranscendental.of_map {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [Algebra R S] [CommRing T] [Algebra R T] {x : S} {f : S →ₐ[R] T} (hf : Function.Injective f) (h : IsStronglyTranscendental R (f x)) :
    theorem IsStronglyTranscendental.of_isLocalization {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [Algebra R S] [CommRing T] [Algebra R T] [Algebra S T] (M : Submonoid S) [IsLocalization M T] [IsScalarTower R S T] {x : S} (h : IsStronglyTranscendental R x) :
    theorem IsStronglyTranscendental.restrictScalars {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [CommRing S] [Algebra R S] [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] {x : T} (h : IsStronglyTranscendental S x) :
    theorem IsStronglyTranscendental.of_transcendental {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {K : Type u_4} [Field K] [Algebra R K] [Algebra S K] [IsScalarTower R S K] [FaithfulSMul R S] [FaithfulSMul S K] {x : S} (H : Transcendental R ((algebraMap S K) x)) :