Strongly transcendental elements #
In this file, we provide basic properties for strongly transcendental elements in an algebra. This is a relatively niche notion, but is useful for proving Zarkisi's main theorem.
Reference #
def
IsStronglyTranscendental
(R : Type u_1)
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
(x : S)
:
We say that x : S is strongly transcendental over R if
forall u : S and all p : R[X], p(x) * u = 0 → p * u = 0.
If S is a domain, and R ⊆ S, this is equivalent to the image of x in Frac(S) being
transcendental over R. See IsStronglyTranscendental.iff_of_isFractionRing.
Equations
- IsStronglyTranscendental R x = ∀ (u : S) (p : Polynomial R), (Polynomial.aeval x) p * u = 0 → Polynomial.map (algebraMap R S) p * Polynomial.C u = 0
Instances For
theorem
IsStronglyTranscendental.transcendental
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{x : S}
(h : IsStronglyTranscendental R x)
[FaithfulSMul R S]
:
Transcendental R x
theorem
isStronglyTranscendental_iff_of_field
{R : Type u_1}
[CommRing R]
{K : Type u_4}
[Field K]
[Algebra R K]
[FaithfulSMul R K]
{x : K}
:
theorem
IsStronglyTranscendental.of_map
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
{x : S}
{f : S →ₐ[R] T}
(hf : Function.Injective ⇑f)
(h : IsStronglyTranscendental R (f x))
:
theorem
IsStronglyTranscendental.of_isLocalization
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
[Algebra S T]
(M : Submonoid S)
[IsLocalization M T]
[IsScalarTower R S T]
{x : S}
(h : IsStronglyTranscendental R x)
:
IsStronglyTranscendental R ((algebraMap S T) x)
theorem
IsStronglyTranscendental.of_isLocalization_left
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
[Algebra S T]
(M : Submonoid R)
[IsLocalization M S]
[IsScalarTower R S T]
{x : T}
(h : IsStronglyTranscendental R x)
:
theorem
IsStronglyTranscendental.restrictScalars
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
{x : T}
(h : IsStronglyTranscendental S x)
:
theorem
IsStronglyTranscendental.of_surjective_left
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
{x : T}
(h : IsStronglyTranscendental R x)
(H : Function.Surjective ⇑(algebraMap R S))
:
theorem
IsStronglyTranscendental.iff_of_isLocalization
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
[CommRing R]
[CommRing S]
[Algebra R S]
[CommRing T]
[Algebra R T]
[Algebra S T]
{M : Submonoid S}
(hM : M ≤ nonZeroDivisors S)
[IsLocalization M T]
[IsScalarTower R S T]
{x : S}
:
theorem
IsStronglyTranscendental.iff_of_isFractionRing
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
(K : Type u_4)
[Field K]
[Algebra R K]
[Algebra S K]
[IsScalarTower R S K]
[FaithfulSMul R S]
[IsFractionRing S K]
{x : S}
:
theorem
IsStronglyTranscendental.of_transcendental
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
{K : Type u_4}
[Field K]
[Algebra R K]
[Algebra S K]
[IsScalarTower R S K]
[FaithfulSMul R S]
[FaithfulSMul S K]
{x : S}
(H : Transcendental R ((algebraMap S K) x))
:
theorem
isStronglyTranscendental_mk_of_mem_minimalPrimes
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsReduced S]
{x : S}
(hx : IsStronglyTranscendental R x)
(q : Ideal S)
(hq : q ∈ minimalPrimes S)
:
IsStronglyTranscendental R ((Ideal.Quotient.mk q) x)