Documentation

Mathlib.RingTheory.Etale.Locus

Etale locus of an algebra #

Main results #

Let A be a R-algebra.

@[reducible, inline]
abbrev Algebra.IsEtaleAt (R : Type u_1) {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (q : Ideal A) [q.IsPrime] :

We say that an R-algebra A is etale at a prime q of A if A_q is formally etale over R.

Equations
Instances For
    def Algebra.etaleLocus (R : Type u_1) (A : Type u_2) [CommRing R] [CommRing A] [Algebra R A] :

    Algebra.etaleLocus R A is the set of primes p of A that are etale.

    Equations
    Instances For
      @[simp]
      theorem Algebra.mem_etaleLocus_iff {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {p : PrimeSpectrum A} :
      theorem Algebra.IsEtaleAt.comp {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommRing R] [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra R B] [IsScalarTower R A B] (p : Ideal A) (P : Ideal B) [P.LiesOver p] [p.IsPrime] [P.IsPrime] [IsEtaleAt R p] [IsEtaleAt A P] :
      theorem Algebra.exists_etale_of_isEtaleAt {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] [FinitePresentation R A] (P : Ideal A) [P.IsPrime] [IsEtaleAt R P] :
      fP, Etale R (Localization.Away f)