Documentation

Mathlib.RingTheory.IntegralClosure.GoingDown

Going down for integrally closed domains #

In this file, we provide the instance that any integral extension of R ⊆ S satisfies going down if R is integrally closed.

theorem Polynomial.coeff_mem_radical_span_coeff_of_dvd {R : Type u_1} [CommRing R] (p q : Polynomial R) (hp : p.Monic) (hq : q.Monic) (H : q p) (i : ) (hi : i q.natDegree) :
q.coeff i (Ideal.span {x : R | i < p.natDegree, p.coeff i = x}).radical