Documentation

Mathlib.RingTheory.IntegralClosure.IsIntegral.AlmostIntegral

Almost integral elements #

def IsAlmostIntegral (R : Type u_1) {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (s : S) :

An element s in an R-algebra is almost integral if there exists r ∈ R⁰ such that r • s ^ n ∈ R for all n.

Equations
Instances For
    def completeIntegralClosure (R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] :

    The complete integral closure is the subalgebra of almost integral elements.

    Equations
    Instances For
      theorem IsIntegral.isAlmostIntegral_of_exists_smul_mem_range {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {s : S} (H : IsIntegral R s) (h : tnonZeroDivisors R, t s (algebraMap R S).range) :
      theorem IsIntegral.isAlmostIntegral_of_isLocalization {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {s : S} (H : IsIntegral R s) (M : Submonoid R) (hM : M nonZeroDivisors R) [IsLocalization M S] :
      theorem IsIntegral.isAlmostIntegral {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [IsFractionRing R S] {s : S} (H : IsIntegral R s) :

      Stacks Tag 00GX (Part 2)

      theorem IsAlmostIntegral.isIntegral {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [IsNoetherianRing R] [IsDomain S] [FaithfulSMul R S] {s : S} (H : IsAlmostIntegral R s) :

      Stacks Tag 00GX (Part 3)