Documentation

Mathlib.RingTheory.LocalRing.ResidueField.Fiber

The fiber of a ring homomorphism at a prime ideal #

Main results #

theorem Ideal.ResidueField.exists_smul_eq_tmul_one {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (x : TensorProduct R S p.ResidueField) :
rp, ∃ (s : S), r x = s ⊗ₜ[R] 1
@[reducible, inline]
abbrev Ideal.Fiber {R : Type u_1} [CommRing R] (p : Ideal R) [p.IsPrime] (S : Type u_3) [CommRing S] [Algebra R S] :
Type (max u_3 u_1)

The fiber of a prime p of R in an R-algebra S, defined to be κ(p) ⊗ S.

See PrimeSpectrum.preimageHomeomorphFiber for the homeomorphism between the spectrum of it and the actual set-theoretic fiber of PrimeSpectrum S → PrimeSpectrum R at p.

Equations
Instances For
    theorem Ideal.Fiber.exists_smul_eq_one_tmul {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] (x : p.Fiber S) :
    rp, ∃ (s : S), r x = 1 ⊗ₜ[R] s
    noncomputable def PrimeSpectrum.preimageEquivFiber (R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (p : PrimeSpectrum R) :

    The fiber PrimeSpectrum S → PrimeSpectrum R at a prime ideal p : PrimeSpectrum R is in bijection with the prime spectrum of κ(p) ⊗[R] S.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      noncomputable def PrimeSpectrum.preimageOrderIsoFiber (R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (p : PrimeSpectrum R) :

      The OrderIso between the fiber of PrimeSpectrum S → PrimeSpectrum R at a prime ideal p : PrimeSpectrum R and the prime spectrum of κ(p) ⊗[R] S.

      Equations
      Instances For
        @[deprecated PrimeSpectrum.preimageOrderIsoFiber (since := "2025-12-07")]

        Alias of PrimeSpectrum.preimageOrderIsoFiber.


        The OrderIso between the fiber of PrimeSpectrum S → PrimeSpectrum R at a prime ideal p : PrimeSpectrum R and the prime spectrum of κ(p) ⊗[R] S.

        Equations
        Instances For
          noncomputable def PrimeSpectrum.primesOverOrderIsoFiber (R : Type u_3) (S : Type u_4) [CommRing R] [CommRing S] [Algebra R S] (p : Ideal R) [p.IsPrime] :

          The OrderIso between the set of primes lying over a prime ideal p : Ideal R, and the prime spectrum of κ(p) ⊗[R] S.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            noncomputable def PrimeSpectrum.preimageHomeomorphFiber (R : Type u_3) (S : Type u_4) [CommRing R] [CommRing S] [Algebra R S] (p : PrimeSpectrum R) :

            The Homeomorph between the fiber of PrimeSpectrum S → PrimeSpectrum R at a prime ideal p : PrimeSpectrum R and the prime spectrum of κ(p) ⊗[R] S.

            Equations
            Instances For