Fontaine's ΞΈ map #
In this file, we define Fontaine's ΞΈ map, which is a ring
homomorphism from the Witt vector π Rβ of the tilt of a perfectoid ring R
to R itself. Our definition of ΞΈ does not require that R is perfectoid in the first place.
We only need R to be p-adically complete.
Main Definitions #
fontaineTheta: Fontaine's ΞΈ map, which is a ring homomorphism fromπ RβtoR.
Main Theorems #
fontaineTheta_teichmuller:ΞΈ([x])is the untilt ofx.fontaineTheta_surjective: Fontaine's ΞΈ map is surjective.
TODO #
Establish that our definition (explicit construction of ΞΈ mod p ^ n) agrees with the
deformation-theoretic approach via the cotangent complex, as in
Bhatt, Lecture notes for a class on perfectoid spaces.
Remark 6.1.7.
Tags #
Fontaine's theta map, perfectoid theory, p-adic Hodge theory
Reference #
- [Fontaine, Sur Certains Types de ReprΓ©sentations p-Adiques du Groupe de Galois d'un Corps Local; Construction d'un Anneau de Barsotti-Tate][fontaine1982certains]
- [Fontaine, Le corps des pΓ©riodes p-adiques][fontaine1994corps]
ΞΈ as a ring homomorphism #
Let π denote the ideal of R generated by the prime number p. In this section, we first
define the ring homomorphism fontaineThetaModPPow : π Rβ β+* R β§Έ π ^ (n + 1).
Then we show they are compatible with each other and lift to a
ring homomorphism fontaineTheta : π Rβ β+* R.
To prove this, we define fontaineThetaModPPow as a composition of the following ring
homomorphisms.
π Rβ --π(Frob^-n)-> π Rβ --π(coeff 0)-> π(R/π) --gh_n-> R/π^(n+1)
Here, the ring map gh_n fits in the following diagram.
π(R) --ghost_n-> R
| |
v v
π(R/π) --gh_n-> R/π^(n+1)
The lift ring map gh_n : π(R/π) β+* R/π^(n+1) of the n-th ghost component
π(R) β+* R along the surjective ring map π(R) β+* π(R/π).
Equations
- One or more equations did not get rendered due to their size.
Instances For
The Fontaine's theta map modulo p^(n+1).
It is the composition of the following ring homomorphisms.
π Rβ --π(Frob^-n)-> π Rβ --π(coeff 0)-> π(R/p) --gh_n-> R/p^(n+1)
Equations
- WittVector.fontaineThetaModPPow R p n = (WittVector.ghostComponentModPPow n).comp ((WittVector.map (PreTilt.coeff 0)).comp (WittVector.map (β(frobeniusEquiv (PreTilt R p) p).symm ^ n)))
Instances For
The Fontaine's ΞΈ map from π Rβ to R.
It is the limit of the ring maps fontaineThetaModPPow n from π Rβ to R/p^(n+1).
Equations
- WittVector.fontaineTheta R p = IsAdicComplete.StrictMono.liftRingHom (Ideal.span {βp}) β― (WittVector.fontaineThetaModPPow R p) β―
Instances For
If the Frobenius map is surjective on R/pR, then the Fontaine's ΞΈ map is surjective.