Documentation

Mathlib.RingTheory.Polynomial.Ideal

Ideals in polynomial rings #

theorem Algebra.mem_ideal_map_adjoin {R : Type u_1} {S : Type u_2} [CommSemiring R] [Semiring S] [Algebra R S] (x : S) (I : Ideal R) {y : (adjoin R {x})} :
y Ideal.map (algebraMap R (adjoin R {x})) I ∃ (p : Polynomial R), (∀ (i : ), p.coeff i I) (Polynomial.aeval x) p = y
theorem Algebra.exists_aeval_invOf_eq_zero_of_idealMap_adjoin_sup_span_eq_top {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (x : S) (I : Ideal R) (hI : I ) [Invertible x] (h : Ideal.map (algebraMap R (adjoin R {x})) IIdeal.span {x, } = ) :
∃ (p : Polynomial R), p.leadingCoeff - 1 I (Polynomial.aeval x) p = 0