Ideals in polynomial rings #
theorem
Polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero
{R : Type u_1}
[CommRing R]
{a : R}
{b : Polynomial R}
{P : Polynomial (Polynomial R)}
:
@[simp]
theorem
Polynomial.ker_modByMonicHom
{R : Type u_1}
[CommRing R]
{q : Polynomial R}
(hq : q.Monic)
:
@[simp]
theorem
Algebra.mem_ideal_map_adjoin
{R : Type u_1}
{S : Type u_2}
[CommSemiring R]
[Semiring S]
[Algebra R S]
(x : S)
(I : Ideal R)
{y : ↥(adjoin R {x})}
:
y ∈ Ideal.map (algebraMap R ↥(adjoin R {x})) I ↔ ∃ (p : Polynomial R), (∀ (i : ℕ), p.coeff i ∈ I) ∧ (Polynomial.aeval x) p = ↑y
theorem
Algebra.exists_aeval_invOf_eq_zero_of_idealMap_adjoin_sup_span_eq_top
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
(x : S)
(I : Ideal R)
(hI : I ≠ ⊤)
[Invertible x]
(h : Ideal.map (algebraMap R ↥(adjoin R {x})) I ⊔ Ideal.span {⟨x, ⋯⟩} = ⊤)
:
∃ (p : Polynomial R), p.leadingCoeff - 1 ∈ I ∧ (Polynomial.aeval ⅟x) p = 0