theorem
MeasureTheory.nullMeasurableSet_sum
{ι : Type u_1}
{α : Type u_2}
{x✝ : MeasurableSpace α}
[Countable ι]
{μ : ι → Measure α}
{s : Set α}
:
instance
MeasureTheory.Measure.instIsFiniteMeasureComap_sardMoreira
{α : Type u_1}
{β : Type u_2}
{x✝ : MeasurableSpace α}
{x✝¹ : MeasurableSpace β}
(μ : Measure β)
(f : α → β)
[IsFiniteMeasure μ]
:
IsFiniteMeasure (comap f μ)
theorem
MeasureTheory.Measure.comap_sum_countable
{ι : Type u_1}
{α : Type u_2}
{β : Type u_3}
{x✝ : MeasurableSpace α}
{x✝¹ : MeasurableSpace β}
[Countable ι]
{f : α → β}
{μ : ι → Measure β}
(hf : ∀ (i : ι) (t : Set α), MeasurableSet t → NullMeasurableSet (f '' t) (μ i))
:
def
MeasureTheory.Measure.FiniteSpanningSetsIn.comap
{α : Type u_1}
{β : Type u_2}
{x✝ : MeasurableSpace α}
{x✝¹ : MeasurableSpace β}
{μ : Measure β}
{T : Set (Set β)}
(sets : μ.FiniteSpanningSetsIn T)
{S : Set (Set α)}
{f : α → β}
(hf : Set.MapsTo (fun (x : Set β) => f ⁻¹' x) T S)
(hmeas : ∀ (n : ℕ), MeasurableSet (f ⁻¹' sets.set n))
:
(comap f μ).FiniteSpanningSetsIn S
Equations
Instances For
theorem
MeasureTheory.SigmaFinite.comap
{α : Type u_1}
{β : Type u_2}
{x✝ : MeasurableSpace α}
{x✝¹ : MeasurableSpace β}
(μ : Measure β)
{f : α → β}
(hf : Measurable f)
[SigmaFinite μ]
:
SigmaFinite (Measure.comap f μ)
instance
MeasureTheory.Measure.instSigmaFiniteSubtypeComap_sardMoreira
{α : Type u_1}
{x✝ : MeasurableSpace α}
{p : α → Prop}
{μ : Measure α}
[SigmaFinite μ]
:
instance
MeasureTheory.Measure.instSFiniteComap_sardMoreira
{α : Type u_1}
{β : Type u_2}
{x✝ : MeasurableSpace α}
{x✝¹ : MeasurableSpace β}
(μ : Measure β)
[SFinite μ]
(f : α → β)
: