Documentation

SardMoreira.MeasureComap

theorem MeasureTheory.nullMeasurableSet_sum {ι : Type u_1} {α : Type u_2} {x✝ : MeasurableSpace α} [Countable ι] {μ : ιMeasure α} {s : Set α} :
NullMeasurableSet s (Measure.sum μ) ∀ (i : ι), NullMeasurableSet s (μ i)
instance MeasureTheory.Measure.instIsFiniteMeasureComap_sardMoreira {α : Type u_1} {β : Type u_2} {x✝ : MeasurableSpace α} {x✝¹ : MeasurableSpace β} (μ : Measure β) (f : αβ) [IsFiniteMeasure μ] :
theorem MeasureTheory.Measure.comap_sum_countable {ι : Type u_1} {α : Type u_2} {β : Type u_3} {x✝ : MeasurableSpace α} {x✝¹ : MeasurableSpace β} [Countable ι] {f : αβ} {μ : ιMeasure β} (hf : ∀ (i : ι) (t : Set α), MeasurableSet tNullMeasurableSet (f '' t) (μ i)) :
comap f (sum μ) = sum fun (i : ι) => comap f (μ i)
def MeasureTheory.Measure.FiniteSpanningSetsIn.comap {α : Type u_1} {β : Type u_2} {x✝ : MeasurableSpace α} {x✝¹ : MeasurableSpace β} {μ : Measure β} {T : Set (Set β)} (sets : μ.FiniteSpanningSetsIn T) {S : Set (Set α)} {f : αβ} (hf : Set.MapsTo (fun (x : Set β) => f ⁻¹' x) T S) (hmeas : ∀ (n : ), MeasurableSet (f ⁻¹' sets.set n)) :
Equations
  • sets.comap hf hmeas = { set := fun (n : ) => f ⁻¹' sets.set n, set_mem := , finite := , spanning := }
Instances For
    theorem MeasureTheory.SigmaFinite.comap {α : Type u_1} {β : Type u_2} {x✝ : MeasurableSpace α} {x✝¹ : MeasurableSpace β} (μ : Measure β) {f : αβ} (hf : Measurable f) [SigmaFinite μ] :
    instance MeasureTheory.Measure.instSFiniteComap_sardMoreira {α : Type u_1} {β : Type u_2} {x✝ : MeasurableSpace α} {x✝¹ : MeasurableSpace β} (μ : Measure β) [SFinite μ] (f : αβ) :
    SFinite (comap f μ)