Auxiliary theorems about ContinuousLinearMap #
Mostly about ContinuousLinearMap.IsInvertible and ContinuousLinearMap.inverse.
theorem
ContinuousLinearMap.IsInvertible.eventually
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{ฮฑ : Type u_4}
{l : Filter ฮฑ}
[CompleteSpace E]
{fโ : E โL[๐] F}
{f : ฮฑ โ E โL[๐] F}
(hfโ : fโ.IsInvertible)
(hf : Filter.Tendsto f l (nhds fโ))
:
โแถ (x : ฮฑ) in l, (f x).IsInvertible
If a family of continuous linear maps converges to an invertible continuous linear map, then the maps are eventually invertible as well.
theorem
ContinuousLinearMap.isBigO_inverse_sub_inverse
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{ฮฑ : Type u_4}
{l : Filter ฮฑ}
{f g : ฮฑ โ E โL[๐] F}
(hf_inv : โแถ (a : ฮฑ) in l, (f a).IsInvertible)
(hf_bdd : Filter.IsBoundedUnder (fun (x1 x2 : โ) => x1 โค x2) l fun (a : ฮฑ) => โ(f a).inverseโ)
(hg_inv : โแถ (a : ฮฑ) in l, (g a).IsInvertible)
(hg_bdd : Filter.IsBoundedUnder (fun (x1 x2 : โ) => x1 โค x2) l fun (a : ฮฑ) => โ(g a).inverseโ)
:
Consider two families of continuous linear maps, f a and g a.
Suppose that both of them are eventually invertible along a filter l,
and the norms of their inverses are bounded.
Then $$f^{-1}_a - g^{-1}_a = O(f_a - g_a)$$.
theorem
ContinuousLinearMap.apply_sub_apply_isBigO
{ฮฑ : Type u_5}
{๐ : Type u_6}
{๐ : Type u_7}
{E : Type u_8}
{F : Type u_9}
{G : Type u_10}
[NontriviallyNormedField ๐]
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
[NormedAddCommGroup G]
{ฯ : ๐ โ+* ๐}
[RingHomIsometric ฯ]
{fโ fโ : ฮฑ โ E โSL[ฯ] F}
{gโ gโ : ฮฑ โ E}
{B : ฮฑ โ G}
{l : Filter ฮฑ}
(hf_bdd : Filter.IsBoundedUnder (fun (x1 x2 : โ) => x1 โค x2) l fun (x : ฮฑ) => โfโ xโ)
(hf_sub : (fun (a : ฮฑ) => fโ a - fโ a) =O[l] B)
(hg_bdd : Filter.IsBoundedUnder (fun (x1 x2 : โ) => x1 โค x2) l fun (x : ฮฑ) => โgโ xโ)
(hg_sub : (fun (a : ฮฑ) => gโ a - gโ a) =O[l] B)
: