Documentation

SardMoreira.ToMathlib.ContinuousLinearMap

Auxiliary theorems about ContinuousLinearMap #

Mostly about ContinuousLinearMap.IsInvertible and ContinuousLinearMap.inverse.

theorem ContinuousLinearMap.IsInvertible.eventually {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {ฮฑ : Type u_4} {l : Filter ฮฑ} [CompleteSpace E] {fโ‚€ : E โ†’L[๐•œ] F} {f : ฮฑ โ†’ E โ†’L[๐•œ] F} (hfโ‚€ : fโ‚€.IsInvertible) (hf : Filter.Tendsto f l (nhds fโ‚€)) :
โˆ€แถ  (x : ฮฑ) in l, (f x).IsInvertible

If a family of continuous linear maps converges to an invertible continuous linear map, then the maps are eventually invertible as well.

theorem ContinuousLinearMap.isBigO_inverse_sub_inverse {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {ฮฑ : Type u_4} {l : Filter ฮฑ} {f g : ฮฑ โ†’ E โ†’L[๐•œ] F} (hf_inv : โˆ€แถ  (a : ฮฑ) in l, (f a).IsInvertible) (hf_bdd : Filter.IsBoundedUnder (fun (x1 x2 : โ„) => x1 โ‰ค x2) l fun (a : ฮฑ) => โ€–(f a).inverseโ€–) (hg_inv : โˆ€แถ  (a : ฮฑ) in l, (g a).IsInvertible) (hg_bdd : Filter.IsBoundedUnder (fun (x1 x2 : โ„) => x1 โ‰ค x2) l fun (a : ฮฑ) => โ€–(g a).inverseโ€–) :
(fun (a : ฮฑ) => (f a).inverse - (g a).inverse) =O[l] fun (a : ฮฑ) => f a - g a

Consider two families of continuous linear maps, f a and g a.

Suppose that both of them are eventually invertible along a filter l, and the norms of their inverses are bounded. Then $$f^{-1}_a - g^{-1}_a = O(f_a - g_a)$$.

theorem ContinuousLinearMap.apply_sub_apply_isBigO {ฮฑ : Type u_5} {๐•œ : Type u_6} {๐• : Type u_7} {E : Type u_8} {F : Type u_9} {G : Type u_10} [NontriviallyNormedField ๐•œ] [NontriviallyNormedField ๐•] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐• F] [NormedAddCommGroup G] {ฯƒ : ๐•œ โ†’+* ๐•} [RingHomIsometric ฯƒ] {fโ‚ fโ‚‚ : ฮฑ โ†’ E โ†’SL[ฯƒ] F} {gโ‚ gโ‚‚ : ฮฑ โ†’ E} {B : ฮฑ โ†’ G} {l : Filter ฮฑ} (hf_bdd : Filter.IsBoundedUnder (fun (x1 x2 : โ„) => x1 โ‰ค x2) l fun (x : ฮฑ) => โ€–fโ‚ xโ€–) (hf_sub : (fun (a : ฮฑ) => fโ‚ a - fโ‚‚ a) =O[l] B) (hg_bdd : Filter.IsBoundedUnder (fun (x1 x2 : โ„) => x1 โ‰ค x2) l fun (x : ฮฑ) => โ€–gโ‚‚ xโ€–) (hg_sub : (fun (a : ฮฑ) => gโ‚ a - gโ‚‚ a) =O[l] B) :
(fun (a : ฮฑ) => (fโ‚ a) (gโ‚ a) - (fโ‚‚ a) (gโ‚‚ a)) =O[l] B