Auxiliary theorems about ContinuousLinearMap #
Mostly about ContinuousLinearMap.IsInvertible and ContinuousLinearMap.inverse.
@[simp]
theorem
ContinuousLinearMap.IsInvertible.self_comp_inverse
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[AddCommMonoid E]
[Module R E]
[AddCommMonoid F]
[Module R F]
[TopologicalSpace E]
[TopologicalSpace F]
{f : E →L[R] F}
(hf : f.IsInvertible)
:
@[simp]
theorem
ContinuousLinearMap.IsInvertible.inverse_comp_self
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[AddCommMonoid E]
[Module R E]
[AddCommMonoid F]
[Module R F]
[TopologicalSpace E]
[TopologicalSpace F]
{f : E →L[R] F}
(hf : f.IsInvertible)
:
theorem
ContinuousLinearMap.IsInvertible.bijective
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[AddCommMonoid E]
[Module R E]
[AddCommMonoid F]
[Module R F]
[TopologicalSpace E]
[TopologicalSpace F]
{f : E →L[R] F}
(hf : f.IsInvertible)
:
theorem
ContinuousLinearMap.IsInvertible.injective
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[AddCommMonoid E]
[Module R E]
[AddCommMonoid F]
[Module R F]
[TopologicalSpace E]
[TopologicalSpace F]
{f : E →L[R] F}
(hf : f.IsInvertible)
:
theorem
ContinuousLinearMap.IsInvertible.surjective
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[AddCommMonoid E]
[Module R E]
[AddCommMonoid F]
[Module R F]
[TopologicalSpace E]
[TopologicalSpace F]
{f : E →L[R] F}
(hf : f.IsInvertible)
:
theorem
ContinuousLinearMap.IsInvertible.inverse
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[AddCommMonoid E]
[Module R E]
[AddCommMonoid F]
[Module R F]
[TopologicalSpace E]
[TopologicalSpace F]
{f : E →L[R] F}
(hf : f.IsInvertible)
:
theorem
ContinuousLinearMap.IsInvertible.of_isInvertible_inverse
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[AddCommMonoid E]
[Module R E]
[AddCommMonoid F]
[Module R F]
[TopologicalSpace E]
[TopologicalSpace F]
{f : E →L[R] F}
(hf : f.inverse.IsInvertible)
:
@[simp]
theorem
ContinuousLinearMap.isInvertible_inverse_iff
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[AddCommMonoid E]
[Module R E]
[AddCommMonoid F]
[Module R F]
[TopologicalSpace E]
[TopologicalSpace F]
{f : E →L[R] F}
: