Residue field of primes in polynomial algebras #
Main results #
Polynomial.residueFieldMapCAlgEquiv:κ(I[X]) ≃ₐ[κ(I)] κ(I)(X)Polynomial.fiberEquivQuotient:κ(p) ⊗[R] (R[X] ⧸ I) = κ(p)[X] / I
@[simp]
theorem
Polynomial.residueFieldMapCAlgEquiv_algebraMap
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsPrime]
(J : Ideal (Polynomial R))
[J.IsPrime]
[J.LiesOver I]
(hJ : J = Ideal.map C I)
(p : Polynomial R)
:
(residueFieldMapCAlgEquiv I J hJ) ((algebraMap (Polynomial R) J.ResidueField) p) = (algebraMap (Polynomial I.ResidueField) (RatFunc I.ResidueField)) (map (algebraMap R I.ResidueField) p)
@[simp]
theorem
Polynomial.residueFieldMapCAlgEquiv_symm_C
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsPrime]
(J : Ideal (Polynomial R))
[J.IsPrime]
[J.LiesOver I]
(hJ : J = Ideal.map C I)
(r : I.ResidueField)
:
noncomputable def
Polynomial.fiberEquivQuotient
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
(f : Polynomial R →ₐ[R] S)
(hf : Function.Surjective ⇑f)
(p : Ideal R)
[p.IsPrime]
:
p.Fiber S ≃ₐ[p.ResidueField] Polynomial p.ResidueField ⧸ Ideal.map (mapRingHom (algebraMap R p.ResidueField)) (RingHom.ker ↑f)
κ(p) ⊗[R] (R[X] ⧸ I) = κ(p)[X] / I
Equations
- One or more equations did not get rendered due to their size.