Documentation

Mathlib.RingTheory.Polynomial.IsIntegral

Results about coefficients of polynomials being integral #

Main results #

theorem Polynomial.isIntegral_coeff_prod {R : Type u_1} {S : Type u_2} {ι : Type u_3} [CommRing R] [CommRing S] [Algebra R S] (s : Finset ι) (p : ιPolynomial S) (H : is, ∀ (j : ), IsIntegral R ((p i).coeff j)) (j : ) :
IsIntegral R ((s.prod p).coeff j)
theorem Polynomial.isIntegral_coeff_of_factors {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [IsDomain S] (p : Polynomial S) (hpmon : IsIntegral R p.leadingCoeff) (hp : p.Splits) (hpr : xp.roots, IsIntegral R x) (i : ) :
theorem Polynomial.isIntegral_coeff_of_dvd {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [IsDomain S] (p : Polynomial R) (q : Polynomial S) (hp : p.Monic) (hq : IsIntegral R q.leadingCoeff) (H : q map (algebraMap R S) p) (i : ) :

Stacks Tag 00H6 ((1))

theorem IsAlmostIntegral.coeff {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [IsDomain R] [FaithfulSMul R S] {p : Polynomial S} (hp : IsAlmostIntegral (Polynomial R) p) (i : ) :

Stacks Tag 00H0 ((1))

theorem IsIntegral.coeff_of_exists_smul_mem_lifts {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [FaithfulSMul R S] [IsDomain S] {p : Polynomial S} (hp : IsIntegral (Polynomial R) p) (hp' : rnonZeroDivisors R, r p Polynomial.lifts (algebraMap R S)) (i : ) :
theorem IsIntegral.coeff_of_isFractionRing {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [IsFractionRing R S] [IsDomain R] {p : Polynomial S} (hp : IsIntegral (Polynomial R) p) (i : ) :

Stacks Tag 00H0 ((2))