Valuation subrings are exactly the maximal local subrings #
See LocalSubring.isMax_iff.
Note that the order on local subrings is not merely inclusion but domination.
instance
instIsIntegrallyClosedSubtypeMemSubring
{K : Type u_3}
[Field K]
(V : ValuationSubring K)
:
instance
instIsIntegrallyClosedSubtypeMemValuationSubring
{K : Type u_3}
[Field K]
(V : ValuationSubring K)
:
Cast a valuation subring to a local subring.
Equations
- A.toLocalSubring = { toSubring := A.toSubring, isLocalRing := ⋯ }
Instances For
theorem
LocalSubring.map_maximalIdeal_eq_top_of_isMax
{K : Type u_3}
[Field K]
{R : LocalSubring K}
(hR : IsMax R)
{S : Subring K}
(hS : R.toSubring < S)
:
theorem
LocalSubring.mem_of_isMax_of_isIntegral
{K : Type u_3}
[Field K]
{R : LocalSubring K}
(hR : IsMax R)
{x : K}
(hx : IsIntegral (↥R.toSubring) x)
:
theorem
LocalSubring.exists_valuationRing_of_isMax
{K : Type u_3}
[Field K]
{R : LocalSubring K}
(hR : IsMax R)
:
∃ (R' : ValuationSubring K), R'.toLocalSubring = R
A local subring is maximal with respect to the domination order if and only if it is a valuation ring.
theorem
LocalSubring.exists_le_valuationSubring
{K : Type u_3}
[Field K]
(A : LocalSubring K)
:
∃ (B : ValuationSubring K), A ≤ B.toLocalSubring
theorem
Subring.exists_le_valuationSubring_of_isIntegrallyClosedIn
{K : Type u_3}
[Field K]
{x : K}
{R : Subring K}
(hxR : x ∉ R)
[IsIntegrallyClosedIn (↥R) K]
:
∃ (V : ValuationSubring K), R ≤ V.toSubring ∧ x ∉ V
Stacks Tag 090P (part (1))
theorem
LocalSubring.exists_le_valuationSubring_of_isIntegrallyClosedIn
{K : Type u_3}
[Field K]
{x : K}
{R : LocalSubring K}
(hxR : x ∉ R.toSubring)
[IsIntegrallyClosedIn (↥R.toSubring) K]
:
∃ (V : ValuationSubring K), R ≤ V.toLocalSubring ∧ x ∉ V
Stacks Tag 090P (part (2))
theorem
Subring.eq_iInf_of_isIntegrallyClosedIn
{K : Type u_3}
[Field K]
{R : Subring K}
[IsIntegrallyClosedIn (↥R) K]
:
A subring integrally closed in a field is the intersection of valuation subrings containing it.
theorem
LocalSubring.eq_iInf_of_isIntegrallyClosedIn
{K : Type u_3}
[Field K]
{R : LocalSubring K}
[IsIntegrallyClosedIn (↥R.toSubring) K]
:
A local subring integrally closed in a field is the intersection of valuation subrings dominating it.
theorem
iInf_valuationSubring_superset
{K : Type u_3}
[Field K]
{s : Set K}
:
⨅ (V : { V : ValuationSubring K // s ⊆ ↑V.toSubring }), (↑V).toSubring = (integralClosure (↥(Subring.closure s)) K).toSubring
The integral closure of a subset in a field is the intersection of all valuation subrings containing it.
theorem
bijective_rangeRestrict_comp_of_valuationRing
{R : Type u_1}
{S : Type u_2}
{K : Type u_3}
[CommRing R]
[CommRing S]
[Field K]
[IsDomain R]
[ValuationRing R]
[IsLocalRing S]
[Algebra R K]
[IsFractionRing R K]
(f : R →+* S)
(g : S →+* K)
(h : g.comp f = algebraMap R K)
[IsLocalHom f]
:
Function.Bijective ⇑(g.rangeRestrict.comp f)
theorem
IsLocalRing.exists_factor_valuationRing
{R : Type u_1}
{K : Type u_3}
[CommRing R]
[Field K]
[IsLocalRing R]
(f : R →+* K)
:
∃ (A : ValuationSubring K) (h : ∀ (x : R), f x ∈ A.toSubring), IsLocalHom (f.codRestrict A.toSubring h)