Documentation

Mathlib.RingTheory.Valuation.LocalSubring

Valuation subrings are exactly the maximal local subrings #

See LocalSubring.isMax_iff. Note that the order on local subrings is not merely inclusion but domination.

Cast a valuation subring to a local subring.

Equations
Instances For
    theorem LocalSubring.isMax_iff {K : Type u_3} [Field K] {A : LocalSubring K} :

    A local subring is maximal with respect to the domination order if and only if it is a valuation ring.

    theorem Ideal.image_subset_nonunits_valuationSubring {K : Type u_3} [Field K] {A : Subring K} (I : Ideal A) (hI : I ) :
    ∃ (B : ValuationSubring K), A B.toSubring A.subtype '' I B.nonunits
    theorem Subring.exists_le_valuationSubring_of_isIntegrallyClosedIn {K : Type u_3} [Field K] {x : K} {R : Subring K} (hxR : xR) [IsIntegrallyClosedIn (↥R) K] :
    ∃ (V : ValuationSubring K), R V.toSubring xV

    Stacks Tag 090P (part (1))

    theorem Subring.eq_iInf_of_isIntegrallyClosedIn {K : Type u_3} [Field K] {R : Subring K} [IsIntegrallyClosedIn (↥R) K] :
    R = ⨅ (V : { V : ValuationSubring K // R V.toSubring }), (↑V).toSubring

    A subring integrally closed in a field is the intersection of valuation subrings containing it.

    A local subring integrally closed in a field is the intersection of valuation subrings dominating it.

    theorem iInf_valuationSubring_superset {K : Type u_3} [Field K] {s : Set K} :

    The integral closure of a subset in a field is the intersection of all valuation subrings containing it.

    theorem bijective_rangeRestrict_comp_of_valuationRing {R : Type u_1} {S : Type u_2} {K : Type u_3} [CommRing R] [CommRing S] [Field K] [IsDomain R] [ValuationRing R] [IsLocalRing S] [Algebra R K] [IsFractionRing R K] (f : R →+* S) (g : S →+* K) (h : g.comp f = algebraMap R K) [IsLocalHom f] :
    theorem IsLocalRing.exists_factor_valuationRing {R : Type u_1} {K : Type u_3} [CommRing R] [Field K] [IsLocalRing R] (f : R →+* K) :
    ∃ (A : ValuationSubring K) (h : ∀ (x : R), f x A.toSubring), IsLocalHom (f.codRestrict A.toSubring h)